Download Free Pipelined Multiprocessor System On Chip For Multimedia Book in PDF and EPUB Free Download. You can read online Pipelined Multiprocessor System On Chip For Multimedia and write the review.

This book describes analytical models and estimation methods to enhance performance estimation of pipelined multiprocessor systems-on-chip (MPSoCs). A framework is introduced for both design-time and run-time optimizations. For design space exploration, several algorithms are presented to minimize the area footprint of a pipelined MPSoC under a latency or a throughput constraint. A novel adaptive pipelined MPSoC architecture is described, where idle processors are transitioned into low-power states at run-time to reduce energy consumption. Multi-mode pipelined MPSoCs are introduced, where multiple pipelined MPSoCs optimized separately are merged into a single pipelined MPSoC, enabling further reduction of the area footprint by sharing the processors and communication buffers. Readers will benefit from the authors’ combined use of analytical models, estimation methods and exploration algorithms and will be enabled to explore billions of design points in a few minutes.
Modern system-on-chip (SoC) design shows a clear trend toward integration of multiple processor cores on a single chip. Designing a multiprocessor system-on-chip (MPSOC) requires an understanding of the various design styles and techniques used in the multiprocessor. Understanding the application area of the MPSOC is also critical to making proper tradeoffs and design decisions. Multiprocessor Systems-on-Chips covers both design techniques and applications for MPSOCs. Design topics include multiprocessor architectures, processors, operating systems, compilers, methodologies, and synthesis algorithms, and application areas covered include telecommunications and multimedia. The majority of the chapters were collected from presentations made at the International Workshop on Application-Specific Multi-Processor SoC held over the past two years. The workshop assembled internationally recognized speakers on the range of topics relevant to MPSOCs. After having refined their material at the workshop, the speakers are now writing chapters and the editors are fashioning them into a unified book by making connections between chapters and developing common terminology. *Examines several different architectures and the constraints imposed on them *Discusses scheduling, real-time operating systems, and compilers *Analyzes design trade-off and decisions in telecommunications and multimedia applications
The purpose of this book is to evaluate strategies for future system design in multiprocessor system-on-chip (MPSoC) architectures. Both hardware design and integration of new development tools will be discussed. Novel trends in MPSoC design, combined with reconfigurable architectures are a main topic of concern. The main emphasis is on architectures, design-flow, tool-development, applications and system design.
Modern multimedia systems are becoming increasingly multiprocessor and heterogeneous to match the high performance and low power demands placed on them by the large number of applications. The concurrent execution of these applications causes interference and unpredictability in the performance of these systems. In Multimedia Multiprocessor Systems, an analysis mechanism is presented to accurately predict the performance of multiple applications executing concurrently. With high consumer demand the time-to-market has become significantly lower. To cope with the complexity in designing such systems, an automated design-flow is needed that can generate systems from a high-level architectural description such that they are not error-prone and consume less time. Such a design methodology is presented for multiple use-cases -- combinations of active applications. A resource manager is also presented to manage the various resources in the system, and to achieve the goals of performance prediction, admission control and budget enforcement.
A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes – Architectures and Applications – therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. Multi-Processor System-on-Chip 1 covers the key components of MPSoC: processors, memory, interconnect and interfaces. It describes advance features of these components and technologies to build efficient MPSoC architectures. All the main components are detailed: use of memory and their technology, communication support and consistency, and specific processor architectures for general purposes or for dedicated applications.
A Multi-Processor System-on-Chip (MPSoC) is the key component for complex applications. These applications put huge pressure on memory, communication devices and computing units. This book, presented in two volumes – Architectures and Applications – therefore celebrates the 20th anniversary of MPSoC, an interdisciplinary forum that focuses on multi-core and multi-processor hardware and software systems. It is this interdisciplinarity which has led to MPSoC bringing together experts in these fields from around the world, over the last two decades. Multi-Processor System-on-Chip 2 covers application-specific MPSoC design, including compilers and architecture exploration. This second volume describes optimization methods, tools to optimize and port specific applications on MPSoC architectures. Details on compilation, power consumption and wireless communication are also presented, as well as examples of modeling frameworks and CAD tools. Explanations of specific platforms for automotive and real-time computing are also included.
Customizable processors have been described as the next natural step in the evolution of the microprocessor business: a step in the life of a new technology where top performance alone is no longer sufficient to guarantee market success. Other factors become fundamental, such as time to market, convenience, energy efficiency, and ease of customization. This book is the first to explore comprehensively one of the most fundamental trends which emerged in the last decade: to treat processors not as rigid, fixed entities, which designers include “as is in their products; but rather, to build sound methodologies to tailor-fit processors to the specific needs of such products. This book addresses the goal of maintaining a very large family of processors, with a wide range of features, at a cost comparable to that of maintaining a single processor. First book to present comprehensively the major ASIP design methodologies and tools without any particular bias Written by most of the pioneers and top international experts of this young domain Unique mix of management perspective, technical detail, research outlook, and practical implementation
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Mobile, Secure and Programmable Networking, held in Paris, France, in October 2020. The 16 full papers presented in this volume were carefully reviewed and selected from 31 submissions. They discuss new trends in networking infrastructures, security, services and applications while focusing on virtualization and cloud computing for networks, network programming, software defined networks (SDN) and their security.
This book outlines a methodology for the use of parallel processing in real time systems. It provides an introduction to parallel processing in general, and to embedded systems in particular. Among the embedded systems are processors in such applications as automobiles, various machinery, IPGAs (field programmable gate arrays), multimedia embedded systems such as those used in the computer game industry, and more. * Presents design and simulation tools as well as case studies. * First presentation of this material in book form.
The demands of increasingly complex embedded systems and associated performance computations have resulted in the development of heterogeneous computing architectures that often integrate several types of processors, analog and digital electronic components, and mechanical and optical components—all on a single chip. As a result, now the most prominent challenge for the design automation community is to efficiently plan for such heterogeneity and to fully exploit its capabilities. A compilation of work from internationally renowned authors, Model-Based Design for Embedded Systems elaborates on related practices and addresses the main facets of heterogeneous model-based design for embedded systems, including the current state of the art, important challenges, and the latest trends. Focusing on computational models as the core design artifact, this book presents the cutting-edge results that have helped establish model-based design and continue to expand its parameters. The book is organized into three sections: Real-Time and Performance Analysis in Heterogeneous Embedded Systems, Design Tools and Methodology for Multiprocessor System-on-Chip, and Design Tools and Methodology for Multidomain Embedded Systems. The respective contributors share their considerable expertise on the automation of design refinement and how to relate properties throughout this refinement while enabling analytic and synthetic qualities. They focus on multi-core methodological issues, real-time analysis, and modeling and validation, taking into account how optical, electronic, and mechanical components often interface. Model-based design is emerging as a solution to bridge the gap between the availability of computational capabilities and our inability to make full use of them yet. This approach enables teams to start the design process using a high-level model that is gradually refined through abstraction levels to ultimately yield a prototype. When executed well, model-based design encourages enhanced performance and quicker time to market for a product. Illustrating a broad and diverse spectrum of applications such as in the automotive aerospace, health care, consumer electronics, this volume provides designers with practical, readily adaptable modeling solutions for their own practice.