Download Free Piezo Particulate Composites Book in PDF and EPUB Free Download. You can read online Piezo Particulate Composites and write the review.

This book provides an overview of the current state of the art in novel piezo-composites based on ferroelectrics. Covering aspects ranging from theoretical materials simulation and manufacturing and characterization methods, to the application and performance of these materials, it focuses on the optimization of the material parameters. Presenting the latest findings on modern composites and highlighting the applications of piezoelectric materials for sensors, transducers and hydro-acoustics, the book addresses an important gap in the physics of active dielectrics and materials science and describes new trends in the research on ferroelectric composites.
This monograph provides researchers, engineers, postgraduates and lecturers working in the field of ferroelectric or piezoelectric and related materials with features of the structure-property relationships in modern piezo-active composites. These are piezoelectric composites which are active dielectric materials, which can be poled ferroelectric ceramics or domain-engineered single crystals poled along specific crystallographic directions. Current knowledge of the effective physical properties of these materials is lacking especially due to gaps of information in physical, chemical, microgeometric and technological factors. For composite and transducer design purposes, the expected properties of these piezo-active materials have been theorized through models by the authors and proven in experiments. Various well-known journals have published this research, among many others: Smart Materials and Structures; Journal of Physics D: Applied Physics; IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control; Acta Materialia.The book summarises and generalises a series of authors' works on the problem of the effective properties and related parameters of modern two- and three-component piezo-active composites wherein the microgeometric factor plays the dominating role. Specific examples of the performance of composites based on domain-engineered single crystals are also discussed. New trends are described in the research of modern piezo-active composites with the aim of filling the gaps in piezoelectric materials science. The primary goal of the book is to show advantages of different methods being applied to manufacture and study the functional composites that are suitable for piezoelectric energy harvesting, hydroacoustic, sensor, actuator, and other transducer applications.
This book offers extensive knowledge and characterization methods for Ultraviolet light curable piezoelectric 0-3 composites for researchers and industry. The book provides extensive research on the use of carbon-based conductive nanoparticles to improve the performance of Ultraviolet light curable piezoelectric composites, forming piezoelectric 0-0-3 composites. Materials researched include Barium Titanate (BTO), Sodium Potassium Niobate (KNN), Graphene Nanoplatelets (GNP), Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO). A comprehensive literature review on piezoelectric 0-3 composites focuses on the main influencing factors to achieve high piezoelectric composite performance. The method to characterize the performance of piezoelectric composites using 4-point bending is adopted from literature, is characterized, and adopted for performance measurements.
This Handbook explains basic concepts underlying electromagnetic properties of materials, addresses ways of deploying them in modern applications, and supplies pertinent data compiled for the first time in a single volume. Examples, including tables, charts, and graphs, are furnished from a practical applications view point of electromagnetic materials in various fields. These applications have grown enormously in recent years, pertinent to electromagnetic shields, radar absorbing materials, bioelectromagnetic phantoms, smart materials, electromagnetically active surfaces, exotic magnets, application-specific electrodes, and ferrites, etc.
Advanced Lightweight Multifunctional Materials presents the current state-of-the-art on multifunctional materials research, focusing on different morphologies and their preparation and applications. The book emphasizes recent advances on these types of materials as well as their application. Chapters cover porous multifunctional materials, thermochromic and thermoelectric materials, shape memory materials, piezoelectric multifunctional materials, electrochromic and electrorheological, soft materials, magnetic and photochromic materials, and more. The book will be a valuable reference resource for academic researchers and industrial engineers working in the design and manufacture of multifunctional materials, composites and nanocomposites. - Provides detailed information on design, modeling and structural applications - Focuses on characteristics, processing, design and applications - Discusses the main types of lightweight multifunctional materials and processing techniques, as well as the physico-chemical insights that can lead to improved performance
This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous and detailed examples and over 150 illustrations. In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.
Advances in nanotechnology have boosted the development of more efficient materials, with emerging sectors (electronics, energy, aerospace, etc.) demanding novel materials to fulfill the complex technical requirements of their products. This is the case of polymeric foams, which may display good structural properties alongside functional characteristics through a complex composition and (micro)structure in which a gas phase is combined with rigid ones, mainly based on nanoparticles, dispersed throughout the polymer matrix. In recent years, there has been an important impulse in the development of nanocomposite foams, extending the concept of nanocomposites to the field of cellular materials. This, alongside developments in new advanced foaming technologies which have allowed the generation of foams with micro, sub-micro, and even nanocellular structures, has extended the applications of more traditional foams in terms of weight reduction, damping, and thermal and/or acoustic insulation to novel possibilities, such as electromagnetic interference (EMI) shielding. This Special Issue, which consists of a total of 22 articles, including one review article written by research groups of experts in the field, considers recent research on novel polymer-based foams in all their aspects: design, composition, processing and fabrication, microstructure, characterization and analysis, applications and service behavior, recycling and reuse, etc.
As the global community confronts challenges in energy, environment, health, agriculture, industry, and construction, the significance of sustainable materials becomes paramount. The looming specter of resource depletion necessitates a paradigm shift, urging researchers and engineers to anticipate future needs and forge materials that align with evolving requirements. Next Generation Materials for Sustainable Engineering underscores the urgency of conserving resources and provides a blueprint for achieving this through judicious and sustainable use. From polymers to alloys, nanocomposites to biomaterials, this book traverses the expansive landscape of materials, deciphering their structures and properties with an eye toward sustainability. The relentless pursuit of innovation in synthesis protocols takes center stage, unveiling pathways to creating novel materials. The chapters dedicated to specific material applications, such as spintronics, nanowires, phase change materials, and nanocomposites, offer a detailed panorama of the latest advancements. This book bridges the gap between theoretical understanding and practical applications by exploring materials for renewable energy, electronic devices, artificial photosynthesis, lithium-sulfur batteries, supercapacitors, and biomedical applications. The book serves as a beacon for academicians, researchers, and material scientists, guiding them through state-of-the-art developments, emerging trends, and challenges in material science and engineering.