Download Free Physiological Views Of The Structure Functions And Disorders Of The Stomach And Alimentary Organs Of The Human Body Book in PDF and EPUB Free Download. You can read online Physiological Views Of The Structure Functions And Disorders Of The Stomach And Alimentary Organs Of The Human Body and write the review.

A version of the OpenStax text
On July 9-10, 2014, the Institute of Medicine's Food Forum hosted a public workshop to explore emerging and rapidly developing research on relationships among the brain, the digestive system, and eating behavior. Drawing on expertise from the fields of nutrition and food science, animal and human physiology and behavior, and psychology and psychiatry as well as related fields, the purpose of the workshop was to (1) review current knowledge on the relationship between the brain and eating behavior, explore the interaction between the brain and the digestive system, and consider what is known about the brain's role in eating patterns and consumer choice; (2) evaluate current methods used to determine the impact of food on brain activity and eating behavior; and (3) identify gaps in knowledge and articulate a theoretical framework for future research. Relationships among the Brain, the Digestive System, and Eating Behavior summarizes the presentations and discussion of the workshop.
The microcirculation of the gastrointestinal tract is under the control of both myogenic and metabolic regulatory systems. The myogenic mechanism contributes to basal vascular tone and the regulation of transmural pressure, while the metabolic mechanism is responsible for maintaining an appropriate balance between O2 demand and O2 delivery. In the postprandial state, hydrolytic products of food digestion elicit a hyperemia, which serves to meet the increased O2 demand of nutrient assimilation. Metabolically linked factors (e.g., tissue pO2, adenosine) are primarily responsible for this functional hyperemia. The fenestrated capillaries of the gastrointestinal mucosa are relatively permeable to small hydrolytic products of food digestion (e.g., glucose), yet restrict the transcapillary movement of larger molecules (e.g., albumin). This allows for the absorption of hydrolytic products of food digestion without compromising the oncotic pressure gradient governing transcapillary fluid movement and edema formation. The gastrointestinal microcirculation is also an important component of the mucosal defense system whose function is to prevent (and rapidly repair) inadvertent epithelial injury by potentially noxious constituents of chyme. Two pathological conditions in which the gastrointestinal circulation plays an important role are ischemia/reperfusion and chronic portal hypertension. Ischemia/reperfusion results in mucosal edema and disruption of the epithelium due, in part, to an inflammatory response (e.g., increase in capillary permeability to macromolecules and neutrophil infiltration). Chronic portal hypertension results in an increase in gastrointestinal blood flow due to an imbalance in vasodilator and vasoconstrictor influences on the microcirculation. Table of Contents: Introduction / Anatomy / Regulation of Vascular Tone and Oxygenation / Extrinsic Vasoregulation: Neural and Humoral / Postprandial Hyperemia / Transcapillary Solute Exchange / Transcapillary Fluid Exchange / Interaction of Capillary and Interstitial Forces / Gastrointestinal Circulation and Mucosal Defense / Gastrointestinal Circulation and Mucosal Pathology I: Ischemia/Reperfusion / Gastrointestinal Circulation and Mucosal Pathology II: Chronic Portal Hypertension / Summary and Conclusions / References / Author Biography
This special topic issue of 'Digestive Diseases' contains contributions discussing the subject in-depth. 'Digestive Diseases' is a well-respected, international peer-reviewed journal in Gastroenterology. Special topic issues are included in the subscription.
The gastrointestinal tract is a long, muscular tube responsible for the digestion of food, assimilation of nutrients and elimination of waste. This is achieved by secretion of digestive enzymes and absorption from the intestinal lumen, with different regions playing specific roles in the processing of specific nutrients. These regions come into play sequentially as ingested material is moved along the length of the GI tract by contractions of the muscle layers. In some regions like the oesophagus transit it rapid and measured in seconds while in others like the colon transit is measured in hours and even days, commensurate with the relative slow fermentation that takes place in the large bowel. An hierarchy of controls, neural and endocrine, serve to regulate the various cellular targets that exist in the gut wall. These include muscle cells for contraction and epithelial cells for secretion and absorption. However, there are complex interactions between these digestive mechanisms and other mechanisms that regulate blood flow, immune function, endocrine secretion and food intake. These ensure a fine balance between the ostensibly conflicting tasks of digestion and absorption and protection from potentially harmful ingested materials. They match assimilation of nutrients with hunger and satiety and they ensure that regions of the GI tract that are meters apart work together in a coordinated fashion to match these diverse functions to the digestive needs of the individual. This ebook will provide an overview of the neural mechanisms that control gastrointestinal function. Table of Contents: Neural Control of Gastrointestinal Function / Cells and Tissues / Enteric Nervous System / From Gut to CNS: Extrinsic Sensory Innervation / Sympathetic Innervation of the Gut / Parasympathetic Innervation of the Gut / Integration of Function / References