Download Free Physics Of Planets Book in PDF and EPUB Free Download. You can read online Physics Of Planets and write the review.

Since the publication of the popular first edition, stellar and planetary scientists have produced numerous new observations, theories, and interpretations, including the "demotion" of our former ninth planet Pluto as a dwarf planet. Covering all of these new discoveries, Planetary Science: The Science of Planets around Stars, Second Edition explains the science associated with the planets, the stars they orbit, and the interactions between them. It examines the formation, evolution, and death of stars and the properties of the Sun that influence the planets of the Solar System. Along with more problems, this second edition adds new material and improves some analytical treatments. The book consists of two main components. For students unfamiliar with stellar properties or the overall structure of the Solar System, the first part gives a general picture of the system as a whole and the interrelationships of the bodies within it. It presents an overview of the nature of stars and the Solar System as well as important results obtained by scientific analysis. The second component is a set of 43 appendices describing the majority of the underlying science required to explain the main features of the Solar System. These appendices cover a variety of specialized topics, from mineralogy to the mechanical interactions of radiation and matter. End-of-chapter problems give students a quantitative understanding of stellar and solar system phenomena. The text shows how useful estimates of various quantities can be made even when characteristics of the system are not known with any precision. While the problems can be completed with a hand calculator, students are encouraged to use the Fortran computer programs provided on the book’s CRC Press web page. Avoiding excessive details, this textbook offers a comprehensive account of stellar and planetary topics. It is suitable for students from a range of disciplines, including astronomy, geology, and earth sciences. The book provides students with an understanding of the nature of the Solar System and the influences that govern its behavior, helping them develop an appreciation of the forces that can influence our planet in the future.
A quantitative introduction to the Solar System and planetary systems science for advanced undergraduate students, this engaging new textbook explains the wide variety of physical, chemical and geological processes that govern the motions and properties of planets. The authors provide an overview of our current knowledge and discuss some of the unanswered questions at the forefront of research in planetary science and astrobiology today. They combine knowledge of the Solar System and the properties of extrasolar planets with astrophysical observations of ongoing star and planet formation, offering a comprehensive model for understanding the origin of planetary systems. The book concludes with an introduction to the fundamental properties of living organisms and the relationship that life has to its host planet. With more than 200 exercises to help students learn how to apply the concepts covered, this textbook is ideal for a one-semester or two-quarter course for undergraduate students.
This volume covers most areas in the physics of the solar system, with special emphasis on gravitational dynamics; its gist is the rational, in particular mathematical, understanding of the main processes at work. Special stress is given to the variety of objects in the planetary system and their long-term evolution. The unique character of this book is its breadth and depth, which aims at bringing the reader to the threshold of original research; however, special chapters and introductory sections are included for the benefit of the beginner. The volume is generally suitable for post-graduate students and researchers in physics, especially in the field related to the solar system. A large amount of figures and diagrams is included, often compiled with real data.
Planets come in many different sizes, and with many different compositions, orbiting our Sun and countless other stars. Understanding their properties and interactions requires an understanding of a diverse set of sub-fields, including orbital and atmospheric dynamics, geology, geophysics, and chemistry. This textbook provides a physics-based tour of introductory planetary science concepts for undergraduate students majoring in astronomy, planetary science, or related fields. It shows how principles and equations learned in introductory physics classes can be applied to study many aspects of planets, including dynamics, surfaces, interiors, and atmospheres. It also includes chapters on the discovery and characterization of extrasolar planets, and the physics of planet formation. Key Features Covers a wide range of planetary science topics at an introductory level Coherently links the fields of solar system science, exoplanetary science, and planet formation Each chapter includes homework questions Includes python templates for reproducing and customizing the figures in the book
Are we alone in the universe? How did life arise on our planet? How do we search for life beyond Earth? These profound questions excite and intrigue broad cross sections of science and society. Answering these questions is the province of the emerging, strongly interdisciplinary field of astrobiology. Life is inextricably tied to the formation, chemistry, and evolution of its host world, and multidisciplinary studies of solar system worlds can provide key insights into processes that govern planetary habitability, informing the search for life in our solar system and beyond. Planetary Astrobiology brings together current knowledge across astronomy, biology, geology, physics, chemistry, and related fields, and considers the synergies between studies of solar systems and exoplanets to identify the path needed to advance the exploration of these profound questions. Planetary Astrobiology represents the combined efforts of more than seventy-five international experts consolidated into twenty chapters and provides an accessible, interdisciplinary gateway for new students and seasoned researchers who wish to learn more about this expanding field. Readers are brought to the frontiers of knowledge in astrobiology via results from the exploration of our own solar system and exoplanetary systems. The overarching goal of Planetary Astrobiology is to enhance and broaden the development of an interdisciplinary approach across the astrobiology, planetary science, and exoplanet communities, enabling a new era of comparative planetology that encompasses conditions and processes for the emergence, evolution, and detection of life.
This textbook details basic principles of planetary science that help to unify the study of the solar system. It is organized in a hierarchical manner so that every chapter builds upon preceding ones. Starting with historical perspectives on space exploration and the development of the scientific method, the book leads the reader through the solar system. Coverage explains that the origin and subsequent evolution of planets and their satellites can be explained by applications of certain basic principles of physics, chemistry, and celestial mechanics and that surface features of the solid bodies can be interpreted by principles of geology.
Astronomer Gerard P. Kuiper ignored the traditional boundaries of his subject. Using telescopes and the laboratory, he made the solar system a familiar, intriguing place. “It is not astronomy,” complained his colleagues, and they were right. Kuiper had created a new discipline we now call planetary science. Kuiper was an acclaimed astronomer of binary stars and white dwarfs when he accidentally discovered that Titan, the massive moon of Saturn, had an atmosphere. This turned our understanding of planetary atmospheres on its head, and it set Kuiper on a path of staggering discoveries: Pluto was not a planet, planets around other stars were common, some asteroids were primary while some were just fragments of bigger asteroids, some moons were primary and some were captured asteroids or comets, the atmosphere of Mars was carbon dioxide, and there were two new moons in the sky, one orbiting Uranus and one orbiting Neptune. He produced a monumental photographic atlas of the Moon at a time when men were landing on our nearest neighbor, and he played an important part in that effort. He also created some of the world’s major observatories in Hawai‘i and Chile. However, most remarkable was that the keys to his success sprang from his wartime activities, which led him to new techniques. This would change everything. Sears shows a brilliant but at times unpopular man who attracted as much dislike as acclaim. This in-depth history includes some of the twentieth century’s most intriguing scientists, from Harold Urey to Carl Sagan, who worked with—and sometimes against—the father of modern planetary science. Now, as NASA and other space agencies explore the solar system, they take with them many of the ideas and concepts first described by Gerard P. Kuiper.
Concise and self-contained, this textbook gives a graduate-level introduction to the physical processes that shape planetary systems, covering all stages of planet formation. Writing for readers with undergraduate backgrounds in physics, astronomy, and planetary science, Armitage begins with a description of the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, rocky, and giant planets, and concludes by describing the gravitational and gas dynamical evolution of planetary systems. He provides a self-contained account of the modern theory of planet formation and, for more advanced readers, carefully selected references to the research literature, noting areas where research is ongoing. The second edition has been thoroughly revised to include observational results from NASA's Kepler mission, ALMA observations and the JUNO mission to Jupiter, new theoretical ideas including pebble accretion, and an up-to-date understanding in areas such as disk evolution and planet migration.
Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field currently available. Topics cover the origin and evolution of life on Earth, the geological, physical and chemical conditions in which life might arise and the detection of extraterrestrial life on other planets and moons. The book also covers the history of our ideas on extraterrestrial life and the origin of life, as well as the ethical, philosophical and educational issues raised by astrobiology. Written to be accessible to students from diverse backgrounds, this text will be welcomed by advanced undergraduates and graduates who are taking astrobiology courses.
This textbook provides an intuitive yet mathematically rigorous introduction to the thermodynamics and thermal physics of planetary processes. It demonstrates how the workings of planetary bodies can be understood in depth by reducing them to fundamental physics and chemistry. The book is based on two courses taught by the author for many years at the University of Georgia. It includes 'Guided Exercise' boxes; end-of-chapter problems (worked solutions provided online); and software boxes (Maple code provided online). As well as being an ideal textbook on planetary thermodynamics for advanced students in the Earth and planetary sciences, it also provides an innovative and quantitative complement to more traditional courses in geological thermodynamics, petrology, chemical oceanography and planetary science. In addition to its use as a textbook, it is also of great interest to researchers looking for a 'one stop' source of concepts and techniques that they can apply to their research problems.