Download Free Physical Sciences And Engineering Advances In Life Sciences And Oncology Book in PDF and EPUB Free Download. You can read online Physical Sciences And Engineering Advances In Life Sciences And Oncology and write the review.

This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).
Engineering and Physical Approaches to Cancer addresses the newest research at this interface between cancer biology and the physical sciences. Several chapters address the mechanobiology of collective and individual cell migration, including experimental, theoretical, and computational perspectives. Other chapters consider the crosstalk of biological, chemical, and physical cues in the tumor microenvironment, including the role of senescence, polyploid giant cells, TGF-beta, metabolism, and immune cells. Further, chapters focus on circulating tumor cells and metastatic colonization, highlighting both bioengineered models as well as diagnostic technologies. Further, this book features the work of emerging and diverse investigators in this field, who have already made impressive cross-disciplinary scientific contributions. This book is designed for a general audience, particularly researchers conversant in cancer biology but less familiar with engineering (and vice-versa). Thus, we envision that this book will be suitable for faculty, postdoctoral fellows, and advanced graduate students across medicine, biological sciences, and engineering. We also anticipate this book will be of interest to medical professionals and trainees, as well as researchers in the pharmaceutical and biomedical device industry. Describes physical aspects of cancer, including collective cell migration, the aberrant tumor microenvironment, circulating tumor cells, and metastatic colonization. First volume available on the topic of physical aspects of cancer
This volume aims to document the most important worldwide accomplishments in converging knowledge and technology, including converging platforms, methods of convergence, societal implications, and governance in the last ten years. Convergence in knowledge, technology, and society is the accelerating, transformative interaction among seemingly distinct scientific disciplines, technologies, and communities to achieve mutual compatibility, synergism, and integration, and through this process to create added value for societal benefit. It is a movement that is recognized by scientists and thought leaders around the world as having the potential to provide far-reaching solutions to many of today’s complex knowledge, technology, and human development challenges. Four essential and interdependent convergence platforms of human activity are defined in the first part of this report: nanotechnology-biotechnology-information technology and cognitive science (“NBIC”) foundational tools; Earth-scale environmental systems; human-scale activities; and convergence methods for societal-scale activities. The report then presents the main implications of convergence for human physical potential, cognition and communication, productivity and societal outcomes, education and physical infrastructure, sustainability, and innovative and responsible governance. As a whole, the report presents a new model for convergence. To effectively take advantage of this potential, a proactive governance approach is suggested. The study identifies an international opportunity to develop and apply convergence for technological, economic, environmental, and societal benefits. The panel also suggests an opportunity in the United States for implementing a program aimed at focusing disparate R and D energies into a coherent activity - a "Societal Convergence Initiative”. This study received input from leading academic, industry, government, and NGO experts from the United States, Latin America, Europe, Asia, and Australia.
Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was one of the most striking advancements of modern science, obtained by the cooperation of physicists, chemists, mathematicians, engineers, biologists, and physicians. This crossing of the life and physical sciences has given rise to new and exciting frontiers, and to a new synthesis where there is a frequent interconnection of expertise, and where there is an exchange of roles among traditionally separated soft and hard sciences. Even if knowledge is still transmitted to new generations within univer sities as separate disciplines, new knowledge is acquired today in the laboratory by truly interdisciplinary teams.
Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.
Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was one of the most striking advancements of modern science, obtained by the cooperation of physicists, chemists, mathematicians, engineers, biologists, and physicians. This crossing of the life and physical sciences has given rise to new and exciting frontiers, and to a new synthesis where there is a frequent interconnection of expertise, and where there is an exchange of roles among traditionally separated soft and hard sciences. Even if knowledge is still transmitted to new generations within univer sities as separate disciplines, new knowledge is acquired today in the laboratory by truly interdisciplinary teams.
Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and implementation challenges in areas such as infrastructure, student education and training, faculty advancement, and inter-institutional partnerships.
Modern cancer research is a high-tech undertaking, overlapping with many fields in the physical sciences. These include nanotechnology, engineering, immunology, and bioinformatics. This book focuses on the science and technology underlying the diagnosis and treatement of cancer. The authors offer insights into technologies including radiotherapy, modelling, and drug encapsulation.
Comprehensive Biomedical Physics, Ten Volume Set is a new reference work that provides the first point of entry to the literature for all scientists interested in biomedical physics. It is of particularly use for graduate and postgraduate students in the areas of medical biophysics. This Work is indispensable to all serious readers in this interdisciplinary area where physics is applied in medicine and biology. Written by leading scientists who have evaluated and summarized the most important methods, principles, technologies and data within the field, Comprehensive Biomedical Physics is a vital addition to the reference libraries of those working within the areas of medical imaging, radiation sources, detectors, biology, safety and therapy, physiology, and pharmacology as well as in the treatment of different clinical conditions and bioinformatics. This Work will be valuable to students working in all aspect of medical biophysics, including medical imaging and biomedical radiation science and therapy, physiology, pharmacology and treatment of clinical conditions and bioinformatics. The most comprehensive work on biomedical physics ever published Covers one of the fastest growing areas in the physical sciences, including interdisciplinary areas ranging from advanced nuclear physics and quantum mechanics through mathematics to molecular biology and medicine Contains 1800 illustrations, all in full color