Download Free Physical Properties Of Thin Films Book in PDF and EPUB Free Download. You can read online Physical Properties Of Thin Films and write the review.

Authoritative reference treats the formation, structure, optical properties, and uses of thin solid films, emphasizing causes of their unusual qualities. 162 figures. 19 tables. 1955 edition.
Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.
Thin films of conducting materials, such as metals, alloys and semiconductors are currently in use in many areas of science and technology, particularly in modern integrated circuit microelectronics that require high quality thin films for the manufacture of connection layers, resistors and ohmic contacts. These conducting films are also important for fundamental investigations in physics, radio-physics and physical chemistry. Physical Properties of Thin Metal Films provides a clear presentation of the complex physical properties particular to thin conducting films and includes the necessary theory, confirming experiments and applications. The volume will be an invaluable reference for graduates, engineers and scientists working in the electronics industry and fields of pure and applied science.
Polycrystalline and Amorphous Thin Films and Devices is a compilation of papers that discusses the electronic, optical, and physical properties of thin material layers and films. This compilation reviews the different applications of thin films of various materials used as protective and optical coatings, thermal transfer layers, and selective membranes from submicron- area VLSI memory units to large-area energy conservation devices. Some papers discuss the basic properties, such as growth, structure, electrical, and optical mechanisms that are encountered in amorphous and polycrystalline thin semiconductor films. For example, experiments on electronic structure of dislocations have led to a model for the intrinsic properties of grain boundaries in polycrystalline semiconductor thin films that can have an impact on the designs of high-efficiency, thin-film solar cells. Other papers review the problems encountered in these thin layers in active semiconductor devices and passive technologies. Techniques in film growth and control variables of source, substrate temperature, and substrate properties will determine the successful performance of the devices installed with these thin film layers. This compilation can prove valuable for chemists, materials engineers, industrial technologists, and researchers in thin-film technology.
The book is devoted to the consideration of the different processes taking place in thin films and at surfaces. Since the most important physico-chemical phenomena in such media are accompanied by the rearrangement of an intra- and intermolecular coordinates and consequently a surrounding molecular ensemble, the theory of radiationless multi-vibrational transitions is used for its description. The second part of the book considers the numerous surface phenomena. And in the third part is described the preparation methods and characteristics of different types of thin films. Both experimental and theoretical descriptions are represented. Media rearrangement coupled with the reagent transformation largely determines the absolute value and temperature dependence of the rate constants and other characteristics of the considered processes. These effects are described at the atomic or molecular level based on the multi-phonon theory, starting from the first pioneering studies through to contemporary studies.A number of questions are included at the end of many chapters to further reinforce the material presented.· Unified approach to the description of numerous physico-chemical phenomena in different materials· Based on the pioneering research work of the authors· Explantion of a variety of experimental observations· Material is presented at two levels of complexity for specialists and non-specialists · Identifies existing and potential applications of the processes and phenomena · Includes questions at the end of some chapters to further reinforce the material discussed
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing
This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).
Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.
This book highlights the latest advances in chemical and physical methods for thin-film deposition and surface engineering, including ion- and plasma-assisted processes, focusing on explaining the synthesis/processing–structure–properties relationship for a variety of thin-film systems. It covers topics such as advances in thin-film synthesis; new thin-film materials: diamond-like films, granular alloys, high-entropy alloys, oxynitrides, and intermetallic compounds; ultra-hard, wear- and oxidation-resistant and multifunctional coatings; superconducting, magnetic, semiconducting, and dielectric films; electrochemical and electroless depositions; thin-film characterization and instrumentation; and industrial applications.
Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.