Download Free Physical Properties Of High Temperature Superconductors V Book in PDF and EPUB Free Download. You can read online Physical Properties Of High Temperature Superconductors V and write the review.

The publication of Volume V of Physical Properties of High Temperature Superconductors is expected in March, 1996. It will have chapters of interest for both fundamental studies and applied research. The topics discussed are expected to include the electromagnetic response (penetration depth and surface resistance), local lattice distortions, the influence of vortex fluctuations on macroscopic behavior, the properties of superlattices, and the symmetry of the superconducting order parameter.
Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.
Since the publication of Physical Properties of High Temperature Superconductors I, research in the field of high temperature superconductivity has continued at a rapid pace. Volume II will contain chapters on some of the major areas of activity which were not covered extensively in Volume I: structure, microstructure, thermodynamics, oxygen stoichiometry effects, nuclear magnetic and quadrupole resonance, Hall effect, electronic structure, and the pairing state. Like Volume I, it will present authoritative and comprehensive reviews written by recognized experts in the field. This book should be useful to all students, scientists, and engineers who desire to know more about high temperature superconductivity.
A much-needed update on complex high-temperature superconductors, focusing on materials aspects; this timely book coincides with a recent major break-through of the discovery of iron-based superconductors. It provides an overview of materials aspects of high-temperature superconductors, combining introductory aspects, description of new physics, material aspects, and a description of the material properties This title is suitable for researchers in materials science, physics and engineering. Also for technicians interested in the applications of superconductors, e.g. as biomagnets
This volume brings the reader up to date on transport phenomena, including electrical and thermal conductivity and infrared properties. In addition, electron tunneling and the characteristics and applications of films are discussed; the preparation of the necessary samples has proceeded, and a sizeable body of reproducible data has become available. Pressure effects are also presented; considerable progress has been made in relating them to the crystallographic and electronic structure of high temperature superconductors. The preparation and characterization of bulk samples is also reviewed.
While a great effort has been made to discover new high temperature superconductors, a large-scale, parallel effort has been made to determine the fundamental properties of these fascinating new materials. This is perhaps one of the best books in the field describing these vital properties in an organized and comprehensive manner. The authors are well known for their creative and powerful research on the new superconductors. This volume will be a useful reference for research workers and for graduate students. A subject index is also included for the user's convenience.
This volume contains two chapters of direct interest for applications: The magnetic vortex states and transformations and the effects of c-axis coupling on the transport properties. In addition, the isotope effect is reviewed, since reliable data on ultra-pure samples are now available. The lattice vibrations (phonons) have been explored extensively by inelastic neutron scattering and infrared absorption and these types of data are reviewed as well. The interesting properties of the superconducting doped fullerenes are described; some of their most fundamental properties are shared by the superconducting cuprates. This book with its subject index, like the earlier three volumes in this series, will be found useful both by people entering the field and by workers who are already active in it.
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.
Key discoveries concerning the different biological functions of microglia in health and disease have attracted scientists from various fields. In Microglia: Methods and Protocols, expert researchers in the field detail methods for selection of the key cellular, molecular and biochemical techniques that are used in studying the many and varied functions of this fascinating cell. These methods and techniques include microglia cell culture for studying microglia activation and functions, as well as their interaction with other cell types both in vitro and in vivo. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Microglia: Methods and Protocols is a useful resource for cell biologists, molecular biologists, immunologists, oncologist and neuroscientists.
This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.