Download Free Physical Phenomena At High Magnetic Fields Ii Book in PDF and EPUB Free Download. You can read online Physical Phenomena At High Magnetic Fields Ii and write the review.

The purpose of the conference was to bring together experts in research areas of science in which high magnetic fields play an important role, to critically assess the current status of research in these areas, and to discuss promising new directions in science, as well as applications which are at the forefront of these fields.The program consisted of talks given by leading experts presenting overviews and critical assessments of certain areas, including semiconductors, the quantum Hall effect, heavy fermions, superconductivity, organic solids, chemical systems, and the generation and use of high magnetic fields in basic and applied research.
This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.
A comprehensive collection of papers on theoretical aspects of electronic processes in simple and synthetic metals, superconductors, bulk and low-dimensional semiconductors under extreme conditions, such as high magnetic and electric fields, low and ultra-low temperatures. The main emphasis is on low-dimensional conductors and superconductors, where correlated electrons, interacting with magnetic or nonmagnetic impurities, phonons, photons, or nuclear spins, result in a variety of new physical phenomena, such as quantum oscillations in the superconducting state, Condon instability, Skyrmions and composite fermions in quantum Hall effect systems, and hyperfine field-induced mesoscopic and nanoscopic phenomena. Several new experimental achievements are reported that promise to delineate future trends in low temperature and high magnetic field physics, including the experimental observation of the interplay between superconductivity and nuclear spin ordering at ultra-low temperatures, new observations of Condon domains in normal metals, and an experimental proposal for the realisation of isotopically engineered, semiconductor-based spin-qubit elements for future quantum computation and communication technology.
Physical Phenomena at High Magnetic Fields IV (PPHMF-IV) was the fourth in the series of conferences sponsored by the National High Magnetic Field Laboratory (NHMFL). The success of PPHMF-I, II and III, held in 1991, 1995 and 1998 respectively, encouraged the organizers to once again bring together experts in scientific research areas where high magnetic fields play an important role, to critically assess the current status of research in these areas, and to discuss promising new directions in science, as well as applications which are in the forefront of these fields.
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological systems, chemistry, atomic and molecular physics, nuclear resonance, plasma physics and astrophysics (including QED).
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological systems, chemistry, atomic and molecular physics, nuclear resonance, plasma physics and astrophysics (including QED).
The electron liquid paradigm is at the basis of most of our current understanding of the physical properties of electronic systems. Quite remarkably, the latter are nowadays at the intersection of the most exciting areas of science: materials science, quantum chemistry, nano-electronics, biology and quantum computation. Accordingly, its importance can hardly be overestimated. During the past 20 years the field has witnessed momentous developments, which are partly covered in this new volume. Advances in semiconductor technology have allowed the realizations of ultra-pure electron liquids whose density, unlike that of the ones spontaneously occurring in nature, can be tuned by electrical means, allowing a systematic exploration of both strongly and weakly correlated regimes. Most of these system are two- or even one-dimensional and can be coupled together in the form of multi-layers or multi-wires, opening vast observational possibilities. On the theoretical side, quantum Monte Carlo methods have allowed an essentially exact determination of the ground-state energy of the electron liquid, and have provided partial answers to the still open question of the structure of its phase diagram. Starting from the 1980s some truly revolutionary concepts have emerged, which are well represented in this volume.
Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology, Six Volume Set captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world Each of the work's three sections presents a complete description of one aspect of the whole Written and Edited by a truly international team of experts