Download Free Physical Chemistry Of Biological Interfaces Book in PDF and EPUB Free Download. You can read online Physical Chemistry Of Biological Interfaces and write the review.

An introduction to the most important fundamental concepts of physicochemical interface science and a description of experimental techniques and applications of surface science in relation to biological systems. It explores artificial assemblies of lipids, proteins and polysaccharides that perform novel functions that living systems cannot duplicate.
Physics and Chemistry of Interfaces Comprehensive textbook on the interdisciplinary field of interface science, fully updated with new content on wetting, spectroscopy, and coatings Physics and Chemistry of Interfaces provides a comprehensive introduction to the field of surface and interface science, focusing on essential concepts rather than specific details, and on intuitive understanding rather than convoluted math. Numerous high-end applications from surface technology, biotechnology, and microelectronics are included to illustrate and help readers easily comprehend basic concepts. The new edition contains an increased number of problems with detailed, worked solutions, making it ideal as a self-study resource. In topic coverage, the highly qualified authors take a balanced approach, discussing advanced interface phenomena in detail while remaining comprehensible. Chapter summaries with the most important equations, facts, and phenomena are included to aid the reader in information retention. A few of the sample topics included in Physics and Chemistry of Interfaces are as follows: Liquid surfaces, covering microscopic picture of a liquid surface, surface tension, the equation of Young and Laplace, and curved liquid surfaces Thermodynamics of interfaces, covering surface excess, internal energy and Helmholtz energy, equilibrium conditions, and interfacial excess energies Charged interfaces and the electric double layer, covering planar surfaces, the Grahame equation, and limitations of the Poisson-Boltzmann theory Surface forces, covering Van der Waals forces between molecules, macroscopic calculations, the Derjaguin approximation, and disjoining pressure Physics and Chemistry of Interfaces is a complete reference on the subject, aimed at advanced students (and their instructors) in physics, material science, chemistry, and engineering. Researchers requiring background knowledge on surface and interface science will also benefit from the accessible yet in-depth coverage of the text.
Electrified interfaces span from metaVsemiconductor and metaVelectrolyte interfaces to disperse systems and biological membranes, and are notably important in so many physical, chemical and biological systems that their study has been tackled by researchers with different scientific backgrounds using different methodological approaches. The various electrified interfaces have several common features. The equilibrium distribution of positive and negative ions in an electrolytic solution is governed by the same Poisson-Boltzmann equation independent of whether the solution comes into contact with a metal, a colloidal particle or a biomembrane, and the same is true for the equilibrium distribution of free electrons and holes of a semiconductor in contact with a different conducting phase. Evaluation of electric potential differences across biomembranes is based on the same identity of electrochemical potentials which holds for a glass electrode and which yields the Nernst equation when applied to a metal/solution interface. The theory of thermally activated electron tunneling, which was developed by Marcus, Levich, Dogonadze and others to account for electron transfer across metaVelectrolyte interfaces, is also applied to light induced charge separation and proton translocation reactions across intercellular membranes. From an experimental viewpoint, the same electrochemical and in situ spectroscopic techniques can equally well be employed for the study of apparently quite different electrified interfaces.
Success or failure of biomaterials, whether tissue engineered constructs, joint and dental implants, vascular grafts, or heart valves, depends on molecular-level events that determine subsequent responses of cells and tissues. This book presents the latest developments and state-of-the-art knowledge regarding protein, cell, and tissue interactions with both conventional and nanophase materials. Insight into these biomaterial surface interactions will play a critical role in further developments in fields such as tissue engineering, regenerative medicine, and biocompatibility of implanted materials and devices. With chapters written by leaders in their respective fields, this compendium will be the authoritative source of information for scientists, engineers, and medical researchers seeking not only to understand but also to control tissue-biomaterial interactions.
Porphyrins, phthalocyanines and their numerous analogs and derivatives are materials of tremendous importance in chemistry, materials science, physics, biology and medicine. They are the red color in blood (heme) and the green in leaves (chlorophyll); they are also excellent ligands that can coordinate with almost every metal in the Periodic Table. Grounded in natural systems, porphyrins are incredibly versatile and can be modified in many ways; each new modification yields derivatives, demonstrating new chemistry, physics and biology, with a vast array of medicinal and technical applications.As porphyrins are currently employed as platforms for study of theoretical principles and applications in a wide variety of fields, the Handbook of Porphyrin Science represents a timely ongoing series dealing in detail with the synthesis, chemistry, physicochemical and medical properties and applications of polypyrrole macrocycles. Professors Karl Kadish, Kevin Smith and Roger Guilard are internationally recognized experts in the research field of porphyrins, each having his own separate area of expertise in the field. Between them, they have published over 1500 peer-reviewed papers and edited more than three dozen books on diverse topics of porphyrins and phthalocyanines. In assembling the new volumes of this unique handbook, they have selected and attracted the very best scientists in each sub-discipline as contributing authors.This handbook will prove to be a modern authoritative treatise on the subject as it is a collection of up-to-date works by world-renowned experts in the field. Complete with hundreds of figures, tables and structural formulas, and thousands of literature citations, all researchers and graduate students in this field will find the Handbook of Porphyrin Science an essential, major reference source for many years to come.
Exploring the structure and physical and chemical properties of solutions, dispersions, soft solids, fats, and cellular systems, Physical Chemistry of Foods describes the physiochemical principles of the reactions and conversions that occur during the manufacture, handling, and storage of foods. Coverage progresses from aspects of thermodynamics, bonds and interaction forces, and reaction kinetics, to transport phenomena, polymers, colloidal interactions, nucleation, glass transitions and freezing, and soft solids. This comprehensive volume effectively clarifies the physicochemical processes encountered in food product development.
This new text examines thebiophysics and biochemistry of nucleic acids and proteins, carving outthe dynamic interface between chemistry and molecular biology, and providing adetailed picture of nucleic acids and proteins, their structures, biologicalproperties, and origins and evolution.
Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces
This book provides detailed information on the surface and surface chemistry of various biointerfaces for the understanding and development of biosensors, biocompatible devices, and drug delivery systems. It highlights the role of interfacial phenomena towards the behaviour of biomolecules on different surfaces and their significance in recent applications. The book also addresses various surface engineering techniques for the modification of biomaterials that are implemented for improving biocompatibility. It provides an updated scientific concept of various interactions of biological systems with surfaces/modified surfaces at the molecular and cellular level. The chapters include various in-vitro, in-vivo, ex-vivo models to illustrate various aspects of Biointerface Engineering. Finally, the book elucidates troubleshooting strategies and future prospects of Biointerface Engineering in Medical Diagnostics and Drug Delivery.
This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.