Download Free Physical Chemical And Biological Treatment Techniques For Industrial Wastes Book in PDF and EPUB Free Download. You can read online Physical Chemical And Biological Treatment Techniques For Industrial Wastes and write the review.

Biological Treatment of Industrial Wastewater presents a comprehensive overview of the latest advances and trends in the use of bioreactors for treating industrial wastewater.
Water pollution occurs when toxic pollutants of varying kinds (organic, inorganic, radioactive and so on) are directly or indirectly discharged into water bodies without adequate treatment to remove such potential pollutants. Today's sources of these potential pollutants, which cause high deterioration of freshwater quality, are city sewage and industrial waste discharge, human agricultural practices, industrial waste disposal practices, mining activities, civil and structural work activities and obviously natural contamination with climate change. When our water is polluted, it is not only devastating to the environment but also to human health. Therefore, development of water and wastewater treatment processes to alleviate water pollution has been a challenging and demanding task for engineers, scientists and researchers. Perhaps this is even more challenging for underdeveloped and developing countries, where water and wastewater treatment facilities, knowledge and infrastructure are limited. Water and wastewater treatment processes are broad and often multidisciplinary in nature, comprising a mixture of research areas including physical, chemical and biological methods to remove or transform various potential pollutants. This is in hopes to achieve acceptable water quality and satisfy governmental and environmental protection agencies' laws and regulations. With these objectives, this book has been written in order to provide various research results and compilation and up-to-date development on the current states of knowledge and techniques in the broad field of water and wastewater treatment processes. Basically, this book will give a comprehensive understanding and advancement and application of various physical, chemical and biological treatment methods in the reduction of potential pollutants (inorganics/organics) from water and wastewater. There are a total 18 book chapters contributed by large number of expert authors around the world, covering the following main research areas: Physical, chemical and biological water treatment processes such as adsorption, biosorption, coagulation/flocculation, electrocoagulation, denitration, membrane filtration/separation, photo-catalytic reduction, advanced oxidation, nutrients removal by struvite crystallisation and nanotechnology; Physical, chemical and biological methods for municipal wastewater and industrial wastewater treatment plants such as primary-secondary sludge treatments, anaerobic digestions, aerobic treatment, activated sludge processes, dewaterability by flocculants, pre-treatments of sludge and rheology of sludge in wastewater treatment; Various operational units/equipment and process control of wastewater treatment plant.
Industrial Waste Treatment Handbook provides the most reliable methodology for identifying which waste types are produced from particular industrial processes and how they can be treated. There is a thorough explanation of the fundamental mechanisms by which pollutants become dissolved or become suspended in water or air. Building on this knowledge, the reader will learn how different treatment processes work, how they can be optimized, and the most efficient method for selecting candidate treatment processes. Utilizing the most up-to-date examples from recent work at one of the leading environmental and science consulting firms, this book also illustrates approaches to solve various environmental quality problems and the step-by-step design of facilities. Practical applications to assist with the selection of appropriate treatment technology for target pollutants Includes case studies based on current work by experts in waste treatment, disposal, management, environmental law and data management Provides glossary and table of acronyms for easy reference
Industrial Wastewater Treatment, Recycling and Reuse is an accessible reference to assist you when handling wastewater treatment and recycling. It features an instructive compilation of methodologies, including advanced physico-chemical methods and biological methods of treatment. It focuses on recent industry practices and preferences, along with newer methodologies for energy generation through waste. The book is based on a workshop run by the Indus MAGIC program of CSIR, India. It covers advanced processes in industrial wastewater treatment, applications, and feasibility analysis, and explores the process intensification approach as well as implications for industrial applications. Techno-economic feasibility evaluation is addressed, along with a comparison of different approaches illustrated by specific case studies. Industrial Wastewater Treatment, Recycling and Reuse introduces you to the subject with specific reference to problems currently being experienced in different industry sectors, including the petroleum industry, the fine chemical industry, and the specialty chemicals manufacturing sector. - Provides practical solutions for the treatment and recycling of industrial wastewater via case studies - Instructive articles from expert authors give a concise overview of different physico-chemical and biological methods of treatment, cost-to-benefit analysis, and process comparison - Supplies you with the relevant information to make quick process decisions
With increasing government regulation of pollution, as well as willingness to levy punitive fines for transgressions, treatment of industrial waste is a important subject. This book is a single source of information on treatment procedures using biochemical means for all types of solid, liquid and gaseous contaminants generated by various chemical and allied industries. This book is intended for practicing environmental engineers and technologists from any industry as well as researchers and professors. The topics covered include the treatment of gaseous, liquid and solid waste from a large number of chemical and allied industries that include dye stuff, chemical, alcohol, food processing, pesticide, pharmaceuticals, paint etc. Information on aerobic and anaerobic reactors and modeling and simulation of waste treatment systems are also discussed.* Compares chemical and biochemical means of industrial waste treatment* Provides details of technology (i.e. reactors, operating conditions etc) with regard to the biochemistry aspects.* Can be used as a teaching aid for graduate courses and a reference material by practicing environmental scientists and engineers.* Researchers can extract synergy between treatment procedures and various effluents.
Recently, research efforts aiming to improve energy efficiency of wastewater treatment processes for large centralized wastewater treatment plants (WWTPs) have been increasing. Global warming impacts, energy sustainability, and biosolids generation are among several key drivers towards the establishment of energy-efficient WWTPs. WWTPs have been recognized as major contributors of greenhouse gas emissions as these are significant energy consumers in the industrialized world. The quantity of biosolids or excess waste activated sludge produced by WWTP will increase in the future due to population growth and this pose environmental concerns and solid waste disposal issues. Due to limited capacity of landfill sites, more stringent environmental legislation, and air pollution from incineration sites, there is a need to rethink the conventional way of dealing with wastewater and the sludge production that comes with it. This book provides an overview of advanced biological, physical and chemical treatment with the aim of reducing the volume of sewage sludge. Provides a comprehensive list of processes aiming at reducing the volume of sewage sludge and increasing biogas production from waste activated sludge. Includes clear process flowsheet showing how the process is modified compared to the conventional waste activated sludge process. Provides current technologies applied on full scale plant as well as methods still under investigation at laboratory scale. Offers data from pilot scale experience of these processes
Carefully designed to balance coverage of theoretical and practical principles, Fundamentals of Water Treatment Unit Processes delineates the principles that support practice, using the unit processes approach as the organizing concept. The author covers principles common to any kind of water treatment, for example, drinking water, municipal wastew
This book provides useful information about bioremediation, phytoremediation, and mycoremediation of wastewater and some aspects of the chemical wastewater treatment processes, including ion exchange, neutralization, adsorption, and disinfection. Additionally, this book elucidates and illustrates the wastewater treatment plants in terms of plant sizing, plant layout, plant design, and plant location. Cutting-edge topics include wet air oxidation of aqueous wastes, biodegradation of nitroaromatic compounds, biological treatment of sanitary landfill leachate, bacterial strains for the bioremediation of olive mill wastewater, gelation of arabinoxylans from maize wastewater, and modeling wastewater evolution.
Practical techniques for handling industrial waste and designing treatment facilities Practical Wastewater Treatment is designed as a teaching and training tool for chemical, civil, and environmental engineers. Based on an AIChE training course, developed and taught by the author, this manual equips readers with the skills and knowledge needed to design a wastewater treatment plant and handle various types of industrial wastes. With its emphasis on design issues and practical considerations, the manual enables readers to master treatment techniques for managing a wide range of industrial wastes, including oil, blood and protein, milk, plating, refinery, and phenolic and chemical plant wastes. A key topic presented in the manual is biological modeling for designing wastewater treatment plants. The author demonstrates how these models lead to both more efficient and more economical plants. As a practical training tool, this manual contains a number of features to assist readers in tackling complex, real-world problems, including: * Examples and worked problems throughout the manual demonstrate how various treatment plants and treatment techniques work * Figures and diagrams help readers visualize and understand complex design issues * References as well as links to online resources serve as a gateway to additional information * Practical design hints, stemming from the author's extensive experience, help readers save time and avoid unwanted and expensive pitfalls * Clear and logically organized presentation has been developed and refined based on an AIChE course taught by the author in the United States, Mexico, and Venezuela Whether a novice or experienced practitioner, any engineer who deals with the treatment of industrial waste will find a myriad of practical advice and useful techniques that they can immediately apply to solve problems in wastewater treatment.
Emphasizing new technologies that produce clean water and energy from the wastewater treatment process, this book presents recent advancements in wastewater treatment by various technologies such as chemical methods, biochemical methods, membrane separation techniques, and nanotechnology. It addresses sustainable water reclamation, biomembrane treatment processes, advanced oxidation processes, and applications of nanotechnology for wastewater treatment. It also includes integrated cost-based design methodologies. Equations, figures, photographs and tables are included within the chapters to aid reader comprehension. Case studies and examples are included as well.