Download Free Photoinduced Phase Transitions Book in PDF and EPUB Free Download. You can read online Photoinduced Phase Transitions and write the review.

A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called photoinduced phase transition, and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.
This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.
Message from The Taniguchi Foundation Dr. Kanamori, Distinguished Guests and Friends: The Taniguchi Foundation wishes to welcome the participants of the nine teenth International Symposium on the Theory of Condensed Matter, who have come from within this country and from different parts of the world. The concept of the symposium is unique in that participants, both Japanese and from abroad, are limited in number to small discussion groups, and live together, although for a short period, as a close-knit community. We feel that this kind of environment will assist towards the strengthening of understanding and the fostering of friendship among the attendees. It is easy to talk about, but difficult to realize, the ideal of international friendship and understanding in a world which is steadily growing smaller. So far, the Foundation has invited a total of 149 participants in this division from 24 foreign countries and 299 participants from Japan. And we are all friends. We hope and trust that even after they have reached the heights of academic fame during the coming decades, the participants will continue to join forces and help to forge closer bonds of friendship and cooperation that will make major contributions not only to academia, but also towards world peace and the welfare of mankind. We hope that all the participants will return home with warm memories of both this symposium and the pleasant times that we have shared. Thank you.
The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.
Offers a comprehensive review of the research and development of mechanically responsive materials and their applications in soft robots Mechanically Responsive Materials for Soft Robotics offers an authoritative guide to the current state of mechanically responsive materials for the development of soft robotics. With contributions from an international panel of experts, the book examines existing mechanically responsive materials such as crystals, polymers, gels, and composites that are stimulated by light and heat. The book also explores the application of mechanical materials to soft robotics. The authors describe the many excellent mechanical crystals developed in recent years that show the ability to bend, twist, rotate, jump, self-heal, and shape memory. Mechanical polymer materials are described for evolution into artificial muscles, photomobile materials, bioinspired soft actuators, inorganic-organic hybrid materials, multi-responsive composite materials, and strain sensor materials. The application of mechanical materials to soft robots is just the beginning. This book reviews the many challenging and versatile applications, such as soft microrobots made from photoresponsive elastomers, four-dimensional printing for assembling soft robots, self-growing of soft robots like plants, and biohybrid robots using muscle tissue. This important book: -Explores recent developments in the use of soft smart materials in robotic systems -Covers the full scope of mechanically responsive materials: polymers, crystals, gels, and nanocomposites -Deals with an interdisciplinary topic of advanced smart materials research -Contains extensive descriptions of current and future applications in soft robotics Written for materials scientists, polymer chemists, photochemists, physical chemists, solid state chemists, inorganic chemists, and robotics engineers, Mechanically Responsive Materials for Soft Robotics offers a comprehensive and timely review of the most recent research on mechanically responsive materials and the manufacture of soft robotics.
Induction of DNA damage by sunlight is a major deleterious event in living organisms. Recent developments have dramatically improved our understanding of the photochemical processes involved at the sub-picosecond time scale and along with next generation sequencing and data processing has generated a need for a complete up-to-date coverage of the field. Written in an accessible and comprehensive manner, DNA Photodamage will appeal to all scientists working in the area whether specialists in the discipline or not and provides a complete coverage of the field, from ultrafast spectroscopy to biomedical research. Bridging the gap between photophysical and photochemical research on model systems, and in vivo and in vitro biological studies, this book aims to identify the most important research trends in the field and review their major findings.
At Yamada Conference LIII, papers on many novel materials and on novel phenomena in condensed matter physics were presented ? for instance, the achievement of simultaneous creation of excitons and free-electron-hole pairs in rare gas solids, and a low frequency fluctuation of the spectral shift of indirect excitons in GaAs coupled quantum wells. Single molecule spectroscopy is a powerful tool for studying molecules including biological systems; the study of delocalization of excitons in the photosynthetic light harvesting antenna system was also reported. The proceedings thus contain many excellent papers dealing with current research topics on the excitonic processes in bulk, quantum wells, quantum dots and other confined systems. This book will serve as an excellent source of recent references and reviews for a wide range of researchers in physics, chemistry, engineering and biological sciences.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
At Yamada Conference LIII, papers on many novel materials and on novel phenomena in condensed matter physics were presented — for instance, the achievement of simultaneous creation of excitons and free-electron-hole pairs in rare gas solids, and a low frequency fluctuation of the spectral shift of indirect excitons in GaAs coupled quantum wells. Single molecule spectroscopy is a powerful tool for studying molecules including biological systems; the study of delocalization of excitons in the photosynthetic light harvesting antenna system was also reported. The proceedings thus contain many excellent papers dealing with current research topics on the excitonic processes in bulk, quantum wells, quantum dots and other confined systems. This book will serve as an excellent source of recent references and reviews for a wide range of researchers in physics, chemistry, engineering and biological sciences.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.