Download Free Photocatalysts Part Ii Book in PDF and EPUB Free Download. You can read online Photocatalysts Part Ii and write the review.

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
Photocatalysts in Advanced Oxidation Processes for Wastewater Treatment comprehensively covers a range of topics aiming to promote the implementation of photocatalysis at large scale through provision of facile and green methods for catalysts synthesis and elucidation of pollutants degradation mechanisms. This book is divided into two main parts namely “Synthesis of effective photocatalysts” (Part I) and “Mechanisms of the photocatalytic degradation of various pollutants” (Part II). The first part focuses on the exploration of various strategies to synthesize sustainable and effective photocatalysts. The second part of the book provides an insights into the photocatalytic degradation mechanisms and pathways under ultraviolet and visible light irradiation, as well as the challenges faced by this technology and its future prospects.
Photocatalysis: Fundamental Processes and Applications, Volume 32 in the Interface Science and Technology Series, discusses the fundamental aspects of photocatalysis and its process and applications to the decontamination of wastewater, hydrogen production via water splitting, and photo reduction of carbon dioxide to hydrocarbon. The book discusses the fundamental aspects of all applications together with their proper mechanisms, thus providing essential information for deep research in the area of clean environment and green energy production. - Provides background on the fundamental and experimental processes of photocatalysis - Covers photocatalysis and its impact on creating a clean environment and energy sources - Applies photocatalysis to the decontamination of wastewater, hydrogen production via water splitting, and photo reduction of carbon dioxide to hydrocarbon - Edited by a world-leading researcher in interface science
Water is one of the essential resources on our planet. Therefore, fresh water and the recycling of waste-water are very important topics in various areas. Energy-saving green technologies are a demand in this area of research. Photocatalysis comprises a class of reactions which use a catalyst activated by light. These reactions include the decomposition of organic compounds into environmental friendly water and carbon dioxide, leading to interesting properties of surfaces covered with a photocatalyst: they protect e.g. against incrustation of fouling matter, they are self-cleaning, antibacterial and viricidal. Therefore, they are attractive candidates for environmental applications such as water purification and waste-water treatment. This book introduces scientists and engineers to the fundamentals of photocatalysis and enlightens the potentials of photocatalysis to increase water quality. Also, strategies to improve the photocatalytic efficacy are pointed out: synthesis of better photocatalysts, combination of photocatalysis with other technologies, and the proper design of photocatalytic reactors. Implementation of applications and a chapter on design approaches for photocatalytic reactors round off the book. 'Photocatalysis and Water Purification' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
Nanostructured Photocatalysts: From Materials to Applications in Solar Fuels and Environmental Remediation addresses the different properties of nanomaterials-based heterogeneous photocatalysis. Heterogeneous nanostructured photocatalysis represents an interesting and viable technique to address issues of climate change and global energy supply. Sustainable hydrogen (H2) fuel production from water via semiconductor photocatalysis, driven by solar energy, is regarded as a viable and sustainable solution to address increasing energy and environmental issues. Similarly, photocatalytic reduction of CO2 with water for the production of hydrocarbons could also be a viable solution. Sections cover band gap tuning, high surface area, the short diffusion path of carriers, and more. - Introduces the utilization of nanostructured materials in heterogeneous photocatalysis for hydrogen fuel production via water splitting - Explains preparation techniques for different nanomaterials and hybrid nanocomposites, enabling improved sunlight absorption efficiency and enhanced charge separation - Assesses the challenges that need to be addressed before this technology can be practically implemented, particularly of identifying cost-effective nanophotocatalysts
Two-dimensional (2D) materials for photocatalytic applications have attracted attention in recent years due to their unique thickness-dependent physiochemical properties. 2D materials offer enhanced functionality over traditional three-dimensional (3D) photocatalysts due to modified chemical composition and electronic structures, as well as abundant surface active sites. This book reviews the applications of 2D-related nano-materials in solar-driven catalysis, providing an up-to-date introduction to the design and use of 2D-related photo(electro)catalysts. This includes not only application areas such as fine chemicals synthesis, water splitting, CO2 reduction, and N2 fixation, but also catalyst design and preparation. Some typical 2D and 2D-related materials (such as layered double hydroxides (LDHs), layered metal oxides, transition metal dichalcogenide (TMDs), metal–organic frameworks (MOFs), graphene, g-C3N4, etc.) are classified, and relationships between structure and property are demonstrated, with emphasis on how to improve 2D-related materials performance for practical applications. While the focus of this book will primarily be on experimental studies, computational results will serve as a necessary reference. With chapters written by expert researchers in their fields, Photocatalysis Using 2D Nanomaterials will provide advanced undergraduates, postgraduates and other researchers convenient introductions to these topics.
Filling the need for a ready reference that reflects the vast developments in this field, this book presents everything from fundamentals, applications, various reaction types, and technical applications. Edited by rising stars in the scientific community, the text focuses solely on visible light photocatalysis in the context of organic chemistry. This primarily entails photoinduced electron transfer and energy transfer chemistry sensitized by polypyridyl complexes, yet also includes the use of organic dyes and heterogeneous catalysts. A valuable resource to the synthetic organic community, polymer and medicinal chemists, as well as industry professionals.
Photocatalytic Systems by Design: Materials, Mechanisms and Applications explores various aspects of photocatalysis, including the photocatalytic phenomenon and process, applications, and the design of photocatalysts via band gap engineering. The book also covers band edge position engineering for multiple photocatalytic applications, such as pollutant degradations, hydrogen production, CO2 reduction into hydrocarbon fuels, antimicrobial disinfections, organic synthesis, N2 fixation, and more. This book is designed to enable beginners to learn the concepts and applications of photocatalysis. Unlike conventional books on photocatalysis, the book provides a 360° perspective into the field of photocatalysis and serves as an informative handbook for all audiences. Addresses all concepts and applications of photocatalysis Covers the fundamentals, including mechanisms of photocatalytic materials Describes the various material systems and engineering of photocatalysts Offers insight into the schemes for photocatalysis of various materials Discusses the application-specific design of photocatalysts
Materials Science in Photocatalysis provides a complete overview of the different semiconductor materials, from titania to third-generation photocatalysts, examining the increasing complexity and novelty of the materials science in photocatalytic materials. The book describes the most recommended synthesis procedure for each of them and the suitable characterization techniques for determining the optical, structural, morphological, and physical-chemical properties. The most suitable applications of the photocatalysts are described in detail, as well as their environmental applications for wastewater treatment, gaseous effluents depollution, water splitting, CO2 ?xation, selective organic synthesis, coupling reactions, and other selective transformations under both UV light and visible-light irradiation. This book offers a useful reference for a wide audience from students studying chemical engineering and materials chemistry to experienced researchers working on chemical engineering, materials science, materials engineering, environment engineering, nanotechnology, and green chemistry. Includes a complete overview of the different semiconductor materials used as photocatalysts Describes methods of preparation and characterization of photocatalysts and their applications Examines new possibilities to prepare effective photocatalysts
This book describes the photocatalytic mechanism, factors affecting photocatalytic activity, design and preparation of different kinds of nanostructured photocatalysts, and their applications in the environmental and energy fields. Further, it illustrates a broad range of modification methods including ion-doping, heterojunction, noble metal deposition, morphological control and sensitizations, which are used to extend the light absorption range of photocatalysts and reduce recombination between electrons and holes. Promising applications include water splitting, contaminant decomposition and photocatalytic reduction of CO2, which are closely related to environmental redemption and new energy development. The book offers an intriguing and useful guide for a broad readership in various fields of catalysis, material sciences, environment and energy.