Download Free Phosphate Solubilizing Microbes For Crop Improvement Book in PDF and EPUB Free Download. You can read online Phosphate Solubilizing Microbes For Crop Improvement and write the review.

With an ever-increasing human population, the demand placed upon the agriculture sector to supply more food is one of the greatest challenges for the agrarian community. In order to meet this challenge, environmentally unfriendly agroch- icals have played a key role in the green revolution and are even today commonly recommended to circumvent nutrient de?ciencies of the soils. The use of ag- chemicals is, though, a major factor for improvement of plant production; it causes a profound deteriorating effect on soil health (soil fertility) and in turn negatively affects the productivity and sustainability of crops. Concern over disturbance to the microbial diversity and consequently soil fertility (as these microbes are involved in biogeochemical processes), as well as economic constraints, have prompted fun- mental and applied research to look for new agro-biotechnologies that can ensure competitive yields by providing suf?ciently not only essential nutrients to the plants but also help to protect the health of soils by mitigating the toxic effects of certain pollutants. In this regard, the role of naturally abundant yet functionally fully unexplored microorganisms such as biofertilizers assume a special signi?cance in the context of supplementing plant nutrients, cost and environmental impact under both conventional practices and derelict environments. Therefore, current devel- ments in sustainability involve a rational exploitation of soil microbial communities and the use of inexpensive, though less bio-available, sources of plant nutrients, which may be made available to plants by microbially-mediated processes.
This book provides a comprehensive description of phosphate solubilizing microorganisms and highlights methods for the use of microphos in different crop production systems. The focus is on understanding both the basic and applied aspects of phosphate solubilizing microorganisms and how phosphorus-deficient soils can be transformed into phosphorus-rich ones by applying phosphate solubilizing microorganisms. The interaction of rhizosphere phosphate solubilizing microorganisms and environmental variables, as well as their importance in the production of crops such as legumes, cereals, vegetables etc. are discussed and considered. The use of cold-tolerant phosphate solubilizing microorganisms to enhance crop productivity in mountainous regions is examined, as are the ecological diversity and biotechnological implications of phosphate solubilizing microorganisms. Lastly, the role of phosphate solubilizing microorganisms in aerobic rice cultivation is highlighted. This volume offers a broad overview of plant disease management using phosphate solubilizing microbes and presents strategies for the management of cultivated crops. It will therefore be of special interest to both academics and professionals working in the fields of microbiology, soil microbiology, biotechnology and agronomy, as well as the plant protection sciences. This timely reference book provides an essential and comprehensive source of material, as it includes recent findings on phosphate solubilizing microorganisms and their role in crop production.
Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety. This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.
In 2002, sixty international specialists met to discuss problems of high P-unavailability as a soil nutrient for crops, and the hazards of increased phosphate input to aquatic habitats from industrial and mining activities, sewage disposal, detergents, and other sources. Among the presentations were updated solutions to enhance P-uptake by plants, bioremediation potential in the rehabilitation of ecosystems, taxonomic characterization interactions with mycorrizae, the physiological and molecular basis of PSM, and more.
This book provides a comprehensive source of information on strategies and concepts of microbial technology especially phosphate-solubilising microbes for the improvement of crops in different agro-ecosystems. The book presents the biological importance of phosphorus and strategies adopted for isolation and screening of PSM (s), mechanisms of P solubilisation, mechanisms of plant growth promotion, and method for the development of microphos. Furthermore, some novel approaches including molecular tools used to identify the potential phosphate-solubilising microbes are presented. The recent advances in understanding the genetics and molecular biology of phosphate-solubilizing bacteria and the genetic engineering of bacterial strains with enhanced phosphate-solubilising activity are discussed that is likely to lead to improve the efficiency of microphos inoculants and crop productivity. The problems, prospect and potentials of phosphate-solubilising microbes and their impact on agronomically important crops grown in conventional soils are discussed separately. Special attention is paid to highlight the functional variations within phosphate-solubilising microbes and to understand the impact of various factors on the phosphate-solubilising efficiency and colonization of such naturally occurring organisms. The synergism between phosphate-solubilizing microbes and other plant growth promoting rhizobacteria/arbuscular mycorrhizal fungi and their interactive effect on crop productivity is highlighted separately. The book also presents a broad and updated view of the management of plant diseases using phosphate-solubilising microbes. The book further describes as to how the growth promoting rhizobacteria facilitate plant growth and how advanced information strategies can be used to manipulate and modify the soil environment.
Crop Improvement through Microbial Biotechnology explains how certain techniques can be used to manipulate plant growth and development, focusing on the cross-kingdom transfer of genes to incorporate novel phenotypes in plants, including the utilization of microbes at every step, from cloning and characterization, to the production of a genetically engineered plant. This book covers microbial biotechnology in sustainable agriculture, aiming to improve crop productivity under stress conditions. It includes sections on genes encoding avirulence factors of bacteria and fungi, viral coat proteins of plant viruses, chitinase from fungi, virulence factors from nematodes and mycoplasma, insecticidal toxins from Bacillus thuringiensis, and herbicide tolerance enzymes from bacteria. - Introduces the principles of microbial biotechnology and its application in crop improvement - Lists various new developments in enhancing plant productivity and efficiency - Explains the mechanisms of plant/microbial interactions and the beneficial use of these interactions in crop improvement - Explores various bacteria classes and their beneficial effects in plant growth and efficiency
This book explores the agricultural, commercial, and ecological future of plants in relation to mineral nutrition. It covers various topics regarding the role and importance of mineral nutrition in plants including essentiality, availability, applications, as well as their management and control strategies. Plants and plant products are increasingly important sources for the production of energy, biofuels, and biopolymers in order to replace the use of fossil fuels. The maximum genetic potential of plants can be realized successfully with a balanced mineral nutrients supply. This book explores efficient nutrient management strategies that tackle the over and under use of nutrients, check different kinds of losses from the system, and improve use efficiency of the plants. Applied and basic aspects of ecophysiology, biochemistry, and biotechnology have been adequately incorporated including pharmaceuticals and nutraceuticals, agronomical, breeding and plant protection parameters, propagation and nutrients managements. This book will serve not only as an excellent reference material but also as a practical guide for readers, cultivators, students, botanists, entrepreneurs, and farmers.
Regulation of phosphate metabolism and transport. The phosphotransferase system. Polyphosphates and phosphates reserves. Phospholipids. Protein export and folding. Signal transduction and phosphoproteins. Structure/function relationships.
This book reviews the latest developments in our understanding of microbial endophytes and their potential applications in enhancing productivity and disease protection. It covers all the latest discoveries regarding endophytes, their interactions with plants and application in agricultural productivity and protection. Our understanding of endophytes has increased exponentially in recent decades. These microbes, such as fungi, bacteria, and actinobacteria, establish a symbiotic or parasitic association with plants. A better understanding of endophytic microorganisms may help to elucidate their functions and potential role in developing sustainable systems of crop production and improved protection against biotic stresses. Endophytes play a vital role in plant growth and health promotion. Endophytic bacteria are of agrobiological interest because they create host-endophyte relationships, which can open exciting prospects for newer biotechnological applications. Endophytes have also proven to be a beneficial and sustainable alternative to agrochemicals due to their role in the biocontrol of pests and diseases. Further, endophytes are essential to the production of several secondary metabolites in grasses, in the process of gummosis in trees, and the production of useful metabolites such as alkaloids, pestaloside, cryptocandin, enfumafungin, subglutinols, etc. for the host plant. They are also involved in the production of enzymes, biosurfactants, biocontrol agents and plant growth promoters. As such, it is imperative that we explore these products’ industrial applications in the fields of biotechnology, pharmacy and agriculture. This volume will offers a valuable guidance for botanists, microbiologists, biotechnologists, molecular biologists, environmentalists, policymakers, conservationists, and those working for the protection of plant species of agricultural and medicinal importance.
The performance of crops in the soil largely depends on the physico-chemical components of the soil, which regulate the availability of nutrients as well as abiotic and biotic stresses. Microbes are the integral component of any agricultural soil, playing a vital role in regulating the bioavailability of nutrients, the tolerance to abiotic and biotic stresses and management of seed-borneand soil-borne plant diseases. The second volume of the book Microbial Inoculants in Sustainable Agricultural Productivity - Functional Applications reflects the pioneering efforts of eminent researchers to explore the functions of promising microbes as microbial inoculants, establish inoculants for field applications and promote corresponding knowledge among farming communities. In this volume, readers will find dedicated chapters on the role of microbes as biofertilizers and biopesticides in the improvement of crop plants, managing soil fertility and plant health, enhancing the efficiency of soil nutrients and establishing systemic phytopathogen resistance in plants, as well as managing various kinds of plant stress by applying microbial inoculants. The impact of microbial inoculants on the remediation of heavy metals, soil carbon sequestration, function of rhizosphere microbial communities and remediation of heavy metal contaminated agricultural soils is also covered in great detail. In this Volume, a major focus is on the approaches, strategies, advances and technologies used to develop suitable and sustainable delivery systems for microbial inoculants in field applications. Subsequent chapters investigate the role of nanomaterials in agriculture and the nanoparticle-mediated biocontrol of nematodes. An overview of the challenges facing the regulation and registration of biopesticides in India rounds out the coverage.