Download Free Phase Transitions Of Interacting Particle Systems Book in PDF and EPUB Free Download. You can read online Phase Transitions Of Interacting Particle Systems and write the review.

Recently, interacting particle systems have been studied widely from the standpoints of mathematics, physics, chemistry and biology. Many researchers are becoming interested in this field.This book focuses on the phase transitions of interacting particle systems, especially their critical values and order parameters. It poses the following question: How can we get good bounds on the critical values and the order parameters? This question is very basic, and many researchers have been trying to get better bounds rigorously. Hence the book provides bounds — both the author's and others'.
From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.
At what point in the development of a new field should a book be written about it? This question is seldom easy to answer. In the case of interacting particle systems, important progress continues to be made at a substantial pace. A number of problems which are nearly as old as the subject itself remain open, and new problem areas continue to arise and develop. Thus one might argue that the time is not yet ripe for a book on this subject. On the other hand, this field is now about fifteen years old. Many important of several basic models is problems have been solved and the analysis almost complete. The papers written on this subject number in the hundreds. It has become increasingly difficult for newcomers to master the proliferating literature, and for workers in allied areas to make effective use of it. Thus I have concluded that this is an appropriate time to pause and take stock of the progress made to date. It is my hope that this book will not only provide a useful account of much of this progress, but that it will also help stimulate the future vigorous development of this field.
This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states.The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications.To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).
This book has been long awaited in the "interacting particle systems" community. Begun by Claude Kipnis before his untimely death, it was completed by Claudio Landim, his most brilliant student and collaborator. It presents the techniques used in the proof of the hydrodynamic behavior of interacting particle systems.
Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.
The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.
This collection of articles is dedicated to Frank Spitzer on the occasion of his 65th birthday. The articles, written by a group of his friends, colleagues, former students and coauthors, are intended to demonstrate the major influence Frank has had on probability theory for the last 30 years and most likely will have for many years to come. Frank has always liked new phenomena, clean formulations and elegant proofs. He has created or opened up several research areas and it is not surprising that many people are still working out the consequences of his inventions. By way of introduction we have reprinted some of Frank's seminal articles so that the reader can easily see for himself the point of origin for much of the research presented here. These articles of Frank's deal with properties of Brownian motion, fluctuation theory and potential theory for random walks, and, of course, interacting particle systems. The last area was started by Frank as part of the general resurgence of treating problems of statistical mechanics with rigorous probabilistic tools.