Download Free Phase Transitions And Crystal Symmetry Book in PDF and EPUB Free Download. You can read online Phase Transitions And Crystal Symmetry and write the review.

About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.
About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.
This book deals with the phenomenological theory of first-order structural phase transitions, with a special emphasis on reconstructive transformations in which a group-subgroup relationship between the symmetries of the phases is absent. It starts with a unified presentation of the current approach to first-order phase transitions, using the more recent results of the Landau theory of phase transitions and of the theory of singularities. A general theory of reconstructive phase transitions is then formulated, in which the structures surrounding a transition are expressed in terms of density-waves, providing a natural definition of the transition order-parameters, and a description of the corresponding phase diagrams and relevant physical properties. The applicability of the theory is illustrated by a large number of concrete examples pertaining to the various classes of reconstructive transitions: allotropic transformations of the elements, displacive and order-disorder transformations in metals, alloys and related structures, crystal-quasicrystal transformations.
Continuum Models for Phase Transitions and Twinning in Crystals presents the fundamentals of a remarkably successful approach to crystal thermomechanics. Developed over the last two decades, it is based on the mathematical theory of nonlinear thermoelasticity, in which a new viewpoint on material symmetry, motivated by molecular theories, plays a c
Current understanding of different phases as well as the phase transitions between them has only been achieved following recent theoretical advances on the effects of dimensionality in statistical physics. P S Pershan explains the connection between these two separate areas and gives some examples of problems where the understanding is still not complete. The most important example is the second order phase transition between the nematic and smectic-A phase. Others include the relation between the several hexatic phases that have been observed and the first order restacking transitions between phases that were all previously identified as smectic-B, but which should more properly be identified as crystalline-B. Some relatively recent experimental developments on the discotic phase, liquid crystal surfaces and lyotropic phases are also included. The book includes 41 major reprints of some of the recent seminal work on the structure of liquid crystals. They are introduced by a brief review of the symmetries and other properties of liquid crystalline phases. In addition, there is a discussion of the differences between true liquid crystalline phases and others that were described as liquid crystalline in the early literature, but which have since been shown to be true three-dimensional crystals. The progression from the isotropic fluid, through the nematic, smectic, and various crystalline phases can be understood in terms of a systematic decrease in symmetry, together with an accompanying variation in structure is explained. A guide to the selected reprints and a sort of ?Rosetta Stone? for these various phases is provided. The goal of this book is to explain the systematics of this progression to students and others that are new to this field, as well as to provide a useful handbook for people already working in the field.
The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
This book deals with the phenomenological theory of first-order structural phase transitions, with a special emphasis on reconstructive transformations in which a group-subgroup relationship between the symmetries of the phases is absent. It starts with a unified presentation of the current approach to first-order phase transitions, using the more recent results of the Landau theory of phase transitions and of the theory of singularities. A general theory of reconstructive phase transitions is then formulated, in which the structures surrounding a transition are expressed in terms of density-waves, providing a natural definition of the transition order-parameters, and a description of the corresponding phase diagrams and relevant physical properties. The applicability of the theory is illustrated by a large number of concrete examples pertaining to the various classes of reconstructive transitions: allotropic transformations of the elements, displacive and order-disorder transformations in metals, alloys and related structures, crystal-quasicrystal transformations.
Crystal Symmetries is a timely account of the progress in the most diverse fields of crystallography. It presents a broad overview of the theory of symmetry and contains state of the art reports of its modern directions and applications to crystal physics and crystal properties. Geometry takes a special place in this treatise. Structural aspects of phase transitions, correlation of structure and properties, polytypism, modulated structures, and other topics are discussed. Applications of important techniques, such as X-ray crystallography, biophysical studies, EPR spectroscopy, crystal optics, and nuclear solid state physics, are represented. Contains 30 research and review papers.
Site Symmetry in Crystals is the first comprehensive account of the group-theoretical aspects of the site (local) symmetry approach to the study of crystalline solids. The efficiency of this approach, which is based on the concepts of simple induced and band representations of space groups, is demonstrated by considering newly developed applications to electron surface states, point defects, symmetry analysis in lattice dynamics, the theory of second-order phase transitions, and magnetically ordered and non-rigid crystals. Tables of simple induced respresentations are given for the 24 most common space groups, allowing the rapid analysis of electron and phonon states in complex crystals with many atoms in the unit cell.