Download Free Phase Transformations And Evolution In Materials Book in PDF and EPUB Free Download. You can read online Phase Transformations And Evolution In Materials and write the review.

This 2006 work began with the author's exploration of the applicability of the finite deformation theory of elasticity when various standard assumptions such as convexity of various energies or ellipticity of the field equations of equilibrium are relinquished. The finite deformation theory of elasticity turns out to be a natural vehicle for the study of phase transitions in solids where thermal effects can be neglected. This text will be of interest to those interested in the development and application of continuum-mechanical models that describe the macroscopic response of materials capable of undergoing stress- or temperature-induced transitions between two solid phases. The focus is on the evolution of phase transitions which may be either dynamic or quasi-static, controlled by a kinetic relation which in the framework of classical thermomechanics represents information that is supplementary to the usual balance principles and constitutive laws of conventional theory.
This textbook explains the physics of phase transformation and associated constraints from a metallurgical or materials science point of view, based on many topics including crystallography, mass transport by diffusion, thermodynamics, heat transfer and related temperature gradients, thermal deformation, and even fracture mechanics. The work presented emphasizes solidification and related analytical models based on heat transfer. This corresponds with the most fundamental physical event of continuous evolution of latent heat of fusion for directional or non-directional liquid-to-solid phase transformation at a specific interface with a certain geometrical shape, such as planar or curved front. Dr. Perez introduces mathematical and engineering approximation schemes for describing the phase transformation, mainly during solidification of pure metals and alloys. Giving clear definitions and explanations of theoretical concepts and full detail of derivation of formulae, this interdisciplinary volume is ideal for graduate and upper-level undergraduate students in applied science, and professionals in the metal making and surface reconstruction industries.
Developed by the late metallurgy professor and master experimentalist Hubert I. Aaronson, this collection of lecture notes details the fundamental principles of phase transformations in metals and alloys upon which steel and other metals industries are based. Mechanisms of Diffusional Phase Transformations in Metals and Alloys is devoted to solid-s
A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.
Written by a world-renowned expert, this text addresses both theoretical and practical aspects of phase transformation in alloys. It examines change in atomic structure and morphology caused by ordering, strain-induced ordering, strain-controlled decomposition, and strain-induced coarsening, applying solid-state theoretical concepts to structure problems. 1983 edition.
This volume collects several in-depth articles giving lucid discussions on new developments in statistical and condensed matter physics. Many, though not all, contributors had been in touch with the late S-K Ma. Written by some of the world's experts and originators of new ideas in the field, this book is a must for all researchers in theoretical physics. Most of the articles should be accessible to diligent graduate students and experienced readers will gain from the wealth of materials contained herein.
Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.
"This book explains the thermodynamics and kinetics of most of the important phase transitions in materials science. It is a textbook, so the emphasis is on explanations of phenomena rather than a scholarly assessment of their origins. The goal is explanations that are concise, clear, and reasonably complete. The level and detail are appropriate for upper division undergraduate students and graduate students in materials science andmaterials physics. The book should also be useful for researchers who are not specialists in these fields. The book is organized for approximately sequential coverage in a graduate-level course. The four parts of the book serve different purposes, however, and should be approached differently"--
A classroom-tested textbook providing a fundamental understandingof basic kinetic processes in materials This textbook, reflecting the hands-on teaching experience of itsthree authors, evolved from Massachusetts Institute of Technology'sfirst-year graduate curriculum in the Department of MaterialsScience and Engineering. It discusses key topics collectivelyrepresenting the basic kinetic processes that cause changes in thesize, shape, composition, and atomistic structure of materials.Readers gain a deeper understanding of these kinetic processes andof the properties and applications of materials. Topics are introduced in a logical order, enabling students todevelop a solid foundation before advancing to more sophisticatedtopics. Kinetics of Materials begins with diffusion, offering adescription of the elementary manner in which atoms and moleculesmove around in solids and liquids. Next, the more complex motion ofdislocations and interfaces is addressed. Finally, still morecomplex kinetic phenomena, such as morphological evolution andphase transformations, are treated. Throughout the textbook, readers are instilled with an appreciationof the subject's analytic foundations and, in many cases, theapproximations commonly used in the field. The authors offer manyextensive derivations of important results to help illuminate theirorigins. While the principal focus is on kinetic phenomena incrystalline materials, select phenomena in noncrystalline materialsare also discussed. In many cases, the principles involved apply toall materials. Exercises with accompanying solutions are provided throughoutKinetics of Materials, enabling readers to put their newfoundknowledge into practice. In addition, bibliographies are offeredwith each chapter, helping readers to investigate specializedtopics in greater detail. Several appendices presenting importantbackground material are also included. With its unique range of topics, progressive structure, andextensive exercises, this classroom-tested textbook provides anenriching learning experience for first-year graduate students.
In the search for new functional materials, a clear understanding about the relationship between the physical properties and the atomic-scale structure of materials is needed. Here, the authors provide graduate students and scientists with an in-depth account of the evolutionary behavior of oxide functional materials within specific structural systems, discussing the intrinsic connections among these different structural systems. Over 300 illustrations and key appendices support the text.