Download Free Phase Stability And Defect Structures In Tialn Hard Coatings Book in PDF and EPUB Free Download. You can read online Phase Stability And Defect Structures In Tialn Hard Coatings and write the review.

This study highlights the role of nitrogen vacancies and defect structures in engineering hard coatings with enhanced phase stability and mechanical properties for high temperature applications. Titanium aluminum nitride (Ti,Al)N based materials in the form of thin coatings has remained as an outstanding choice for protection of metal cutting tools due to its superior oxidation resistance and high-temperature wear resistance. High-temperature spinodal decomposition of metastable (Ti,Al)N into coherent c-TiN and c-AlN nm-sized domains results in high hardness at elevated temperatures. Even higher thermal input leads to transformation of c-AlN to w-AlN, which is detrimental to the mechanical properties of the coating. One mean to delay this transformation is to introduce nitrogen vacancies. In this thesis, I show that by combining a reduction of the overall N-content of the c-(Ti,Al)Ny (y < 1) coating with a low substrate bias voltage during cathodic arc deposition an even more pronounced delay of the c-AlN to w-AlN phase transformation is achieved. Under such condition, age hardening is retained until 1100 ?C, which is the highest temperature reported for (Ti,Al)N films. During cutting operations, the wear mechanism of the cathodicarc-deposited c-(Ti0.52Al0.48)Ny with N-contents of y = 0.92, 0.87, and 0.75 films are influenced by the interplay of nitrogen vacancies, microstructure, and chemical reactions with the workpiece material. The y = 0.75 coating contains the highest number of macroparticles and has an inhomogeneous microstructure after machining, which lower its flank and crater wear resistance. Age hardening of the y = 0.92 sample causes its superior flank wear resistance while the dense structure of the y = 0.87 sample prevents chemical wear that results in excellent crater wear resistance. Heteroepitaxial c-(Ti1-x,Alx)Ny (y = 0.92, 0.79, and0.67) films were grown on MgO(001) and (111) substrates using magnetron putter deposition to examine the details of their defect structures during spinodal decomposition. At 900 ?C, the films decompose to form coherent c-AlN- and c-TiN- rich domains with elongated shape along the elastically soft <001> direction. Deformation maps show that most strains occur near the interface of the segregated domains and inside the c-TiN domains. Dislocations favorably aggregate in c-TiN rather than c-AlN because the later has stronger directionality of covalent chemical bonds. At elevated temperature, the domain size of (001) and (111)- oriented c-(Ti,Al)Ny films increases with the nitrogen content. This indicates that there is a delay in coarsening due to the presence of more N vacancies in the film. The structural and functional properties (Ti1-x,Alx)Ny are also influenced by its Al content (x). TiN and (Ti1-x,Alx)Ny (y = 1, x = 0.63 and x = 0.77) thin films were grown on MgO(111) substrates using magnetron sputtering technique. Both TiN and Ti0.27Al0.63N films are single crystals with cubic structure. (Ti0.23,Al0.77)N film has epitaxial cubic structure only in the first few atomic layers then it transitions to an epitaxial wurtzite layer, with an orientation relationship of c-(Ti0.23,Al0.77)N(111)[1-10]??w-(Ti0.23,Al0.77)N(0001)[11-20]. The w-(Ti0.23,Al0.77)N shows phase separation of coherent nm-sized domains with varying chemical composition during growth. After annealing at high temperature, the domains in w-(Ti0.23,Al0.77)N have coarsened. The domains in w-(Ti0.23,Al0.77)N are smaller compared to the domains in c-(Ti0.27,Al0.63)N film that has undergone spinodal decomposition. The results that emerged from this thesis are of great importance in the cutting tool industry and also in the microelectronics industry, because the layers examined have properties that are well suited for diffusion barriers.
The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite (WC-Co) coated with different combinations of carbide, nitride, and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings, mainly α-Al2O3, are especially desired because of their high hot-hardness, chemical inertness with respect to the workpiece, and their low friction. The search for possible alloy elements, which may facilitate the deposition of such oxides by means of physical vapor deposition (PVD) techniques, has been the goal of this thesis. The sought alloy should form thermodynamically stable or metastable compounds, compatible with the temperature of use in metal cutting application. This thesis deals with process development and coating characterization of such new oxide alloy thin films, focusing on the Al-V-O, Al-Cr-Si-O, and Cr-Zr-O systems. Alloying aluminum oxide with iso-valent vanadium is a candidate for forming the desired alloys. Therefore, coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited with reactive sputter deposition. X-ray diffraction showed three different crystal structures depending on V-metal fraction in the coating: α-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, (63 - 42 at.% V), and a gamma-alumina-like solid solution at lower V-content, (18 and 7 at.%), were observed, the later was shifted to larger d-spacing compared to the pure γ-Al2O3 sample obtained if deposited with only Al-target. Annealing the Al-rich coatings in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 °C for 42 at.% V and 700 °C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure γ-Al2O3-coating which transformed to α-Al2O3 after annealing to 1100° C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The hardness then decreases with increasing V-content, larger than 7 at.% V metal fraction. Doping the Al2O3 coating with 7 at.% V resulted in a significant surface smoothening compared to the binary oxide. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings. This work increases the understanding of this complicated material system with respect to possible phases formed with pulsed DC magnetron sputtering deposition as well as their response to annealing in air. The inherent difficulties of depositing insulating oxide films with PVD, requiring a closed electrical circuit, makes the investigation of process stability an important part of this research. In this context, I investigated the influence of adding small amount of Si in Al-Cr cathode on the coating properties in a pulsed DC industrial cathodic arc system and the plasma characteristics, process parameters, and coating properties in a lab DC cathodic arc system. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating. The effect of Si in the Al-Cr cathode in the industrial cathodic arc system showed slight improvements on the cathode erosion but Si was found in all coatings where Si was added in the cathode. The Si addition promoted the formation of the B1-like metastable cubic oxide phase and the incorporation led to reduced or equal hardness values compared to the corresponding Si-free processes. The DC-arc plasma study on the same material system showed only small improvements in the cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at.% Si in the Al70Cr30-cathode. The presence of volatile SiO species could be confirmed through plasma analysis, but the loss of Si through these species was negligible, since the coating composition matched the cathode composition also under these conditions. The positive effect of added Si on the process stability at the cathode surface, should be weighed against Si incorporation in the coating. This incorporation seems to lead to a reduction in mechanical properties in the as-deposited coatings and promote the formation of a B1-like cubic metastable oxide structure for the (Al,Cr)2O3 oxide. This formation may or may not be beneficial for the final application since literature indicates a slight stabilization of the metastable phase upon Si-incorporation, contrary to the effect of Cr, which stabilizes the α-phase. The thermal stability of alloys for metal cutting application is crucial for their use. Previous studies on another alloy system, Cr-Zr-O, had shown solid solution, for Cr-rich compositions in that material system, in the sought corundum structure. The thermal stability of α-Cr0.28Zr0.10O0.61 coating deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was therefore investigated here after annealing in vacuum up to 870 °C. The annealed samples showed transformation of α-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc-Cr. The instability of the α-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. Further in situ synchrotron XRD annealing studies on the α-Cr0.28Zr0.10O0.61 coating in air and in vacuum showed increased stability for the air annealed sample up to at least 975 °C, accompanied with a slight increase in ex-situ measured nanohardness. The onset temperature for formation of tetragonal ZrO2 was similar to that for isothermally vacuum annealing. The synchrotron-vacuum annealed coating again decomposed into bcc-Cr and t-ZrO2, with an addition of monoclinic–ZrO2 due to grain growth. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects present with small grains sizes, may prove to be useful for metal cutting applications. The observed phase segregation of α-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudobinary oxide system also opens up design routes for pseudobinary oxides with tunable microstructural and mechanical properties.
Hard coating’s thermal stability is essential due to the high temperature environment of high-speed cutting applications, while the phase and microstructure evolution induced by exposing the coating to high temperature affects the mechanical properties. In this thesis, the mechanical stability of arc-evaporated, hard, transition metal nitride coatings annealed at high temperature is analyzed and related to the phase and microstructure evolution. In addition to hardness, fracture toughness is evaluated by surface and cross-sectional investigations by scanning/transmission electron microscopy of damage events following mechanical tests. The crack resistance of Ti1?xAlxN with a range of Al content (x = 0.23-0.82) was studied by contact fatigue tests, where the differences in the microstructure were found to play a major role. Superior mechanical properties were found in Ti0.63Al0.37N; in the as-deposited state as a result of a favorable grain size, and after annealing at 900o C due to the microstructure formed during spinodal decomposition. The mechanical and high-temperature properties of hard coatings can be enhanced by alloying or multi-layering. Within this work, quaternary Ti-Al-X-N (X = Cr, Nb and V) alloys were studied and superior toughness was found for TiAl(Nb)N in both the as-deposited and annealed (1100? C) states. The hexagonal (h)-AlN formation in cubic (c)-TixAl0.37Cr1?0.37?xN (x = 0.03 and 0.16) was analyzed by in-situ x-ray scattering during annealing. The energy for h-AlN formation was found to be dependent on the microstructure evolution during annealing, which varies with the coating composition. High Al content h-ZrAlN/c-TiN and h-ZrAlN/c-ZrN multilayers were investigated through scratch tests followed by focused ion-beam analysis of the crack propagation. A c-Ti(Zr)N phase forms in h-ZrAlN/c-TiN multilayers at high temperatures and that contributes to enhanced hardness and fracture toughness by keeping the semi-coherent sub-interfaces. Finally, an in-situ analysis of coatings by x-ray scattering during a turning process was carried out. It demonstrates the possibility of observation of stress evolution and thermal expansion of the coatings or the work piece material during machining. This experiment provides real-time information on the coating behavior during cutting. Hårda skikts högtemperaturstabilitet är viktig på grund av den höga temperaturskikten utsätts för under skärande bearbetning, och den utveckling av faser och mikrostruktur som då sker påverkar skiktets mekaniska egenskaper. I den här avhandlingen har den mekaniska stabiliteten hos arcförångade, hårda metallnitridskikt som värmebehandlats vid höga temperaturer studerats. Förutom hårdhet har även skiktens seghet utvärderats genom yt- och tvärsnittsstudier av den sprickbildning som uppstår vid mekanisk provning med hjälp av svep- och transmissionselektronmikroskopi. Segheten hos Ti1?xAlxN skikt med varierande Al-halt (x = 0.23-0.82) studerades genom utmattningsprovning och resultaten visar att förändringar i mikrostrukturen spelar en stor roll. Ti0.63Al0.37N skikten hade överlägsna mekaniska egenskaper; på grund av en fördelaktig kornstorlek i de obehandlade skikten och efter värmebehandling som ett resultat av det spinodala sönderfall som skett. De mekaniska egenskaperna och högtemperaturegenskaperna hos hårda skikt kan förbättras genom legering eller genom multilagring. I den här avhandlingen har kvarternära Ti-Al-X-N (X = Cr, Nb eller V) skikt studerats och TiAl(Nb)N skikten hade en överlägsen seghet i både obehandlat och värmebehandlat (1100oC) tillstånd. Bildandet av h-AlN i TixAl0.37Cr1?0.37?xN (x = 0.03 and 0.16) skikt studerades genom in situ röntgenspridning under värmebehandling. Den energi som krävs för att bilda h-AlN beror av mikrostrukturutvecklingen under värmebehandling vilken i sin tur beror av skiktens kemiska sammansättning. h-ZrAlN/c-TiN och h-ZrAlN/c-ZrN multilager med hög Al-halt undersöktes genom reptester följda av tvärsnittsstudier av sprickbildningen genom en analys med en fokuserad jonstråle (FIB). En c-Ti(Zr)N fas bildas vid höga temperaturer i h-ZrAlN/c-TiN multilagren och det bidrar till förhöjd hårdhet och förbättrad seghet på grund av en bibehållen koherens mellan lagren. Slutligen har in situ röntgenspridningsstudier av ytskikt utförts vid svarvning. Studien visar på möjligheten att observera spänning och värmeutvidgning av skikten eller arbetsmaterialet under bearbetning. Experimenten ger information om skiktens beteende under bearbetning i realtid. La estabilidad térmica del recubrimiento es esencial debido a que estos recubrimientos durante su aplicación son utilizados a elevada temperatura y a alta velocidad. Durante dicho proceso, la evolución microestructural afecta a las propiedades mecánicas. En dicha tesis, la estabilidad mecánica de los recubimientos duros base nitruro producidos mediante arco y recocidos a elevada temperatura son analizados y se correlacionado con su transformación de fase. La dureza, la resistencia a la fractura son evaluados mediante la observación tanto superficial como transversal mediante microscopia electrónica de barrido. La resistencia a la propagación de grieta de Ti1?xAlxN con un contenido en Al que fluctúa entre 0.23-0.82 se estudia mediante ensayos de fatiga por contacto, donde la diferencia microstructural juega un papel importante. Las mejores propiedades mecánicas se encentran en las muestras con un 0.63 de Ti donde se ha realizado un proceso de recocido a 900o C debido a la descomposición espinoidal. Las características mecánicas y de alta temperatura de recubrimientos duros pueden ser mejoradas si tenemos un recubrimiento multicapa. Aleaciones cuaternarias de Ti-Al-X-N (X = Cr, Nb y V) son estudiada, y una mejor tenacidad de fractura se encuentra para la muestra TiAl(Nb)N sin tratamiento de recocido como recocida a 1000ºC. La formación del AlN con una estructura hexagonal en la muestra TixAl0.37Cr1?0.37?xN (x = 0.03 y 0.16) son analizadas mediante ensayos in-situ de difracción de rayos X durante el proceso de recocido. Cabe mencionar que la energía cinética para la formación de la AlN con una estructura hexagonal depende del proceso de recocido, la cual hace variar la composición química del recubrimiento. Multicapas de h (hexagonal)-ZrAlN/c (cúbica)-TiN con un elevado contenido de Al son estudiadas mediante ensayos de rayado y la generación de daño es observado mediante la técnica del haz de iones focalizados. Las formas de la fase de c-Ti(Zr)N en las multicapas de (h)-ZrAlN/c-TiN formadas a elevadas temperaturas contribuyen a mejorar la dureza y la tenacidad de fractura manteniendo la semicoherencia en las intercaras entre cada capa. Finalmente, se realiza un análisis in-situ de los diferentes recubrimientos me diante dispersión de rayos X durante un proceso de torneado. En este caso, se demuestra la posibilidad de observar la evolución de las tensiones residuales y de la expansión térmica durante el proceso de conformado. Dicho experimentos proporciona información en tiempo real sobre el comportamiento del recubrimiento en condiciones de servicio.
This thesis investigates the effect of point defects (nitrogen vacancies and interstitials) and multilayering ((Ti,Al)N/TiN) on the phase transformations in cathodic arc-evaporated cubic (Ti,Al)N thin films at elevated temperatures. Special attention is paid to the evolution of the beneficial spinodal decomposition into c-TiN and c-AlN, the detrimental formation of wurtzite AlN and the potential application as hard coating in cutting tools. c-(Ti1-xAlx)Ny thin films with varying Al fractions and N content (y = 0.93 to 0.75) show a delay in the spinodal decomposition when increasing the amount of N vacancies. This results in a 300 °C upshift in the age hardening and a delay in the w-AlN formation, while additions of self-interstitials enhance phase separation. High temperature interaction between hard metal substrates and thin films is more pronounced when increasing N deficiency through diffusion of substrate elements into the film. Low N content films (y = 0.58 to 0.40) showed formation of additional phases such as Ti4AlN3, Ti2AlN, Al5Ti2 and Al3Ti during annealing and a transformation from Ti2AlN to Ti4AlN3 via intercalation. The multilayer structure of TiN/TiAlN results in surfacedirected spinodal decomposition that affects the decomposition behavior. Careful use of these effects appears as a promising method to improve cutting tool performance. Diese Arbeit untersucht den Effekt von Punktdefekten (Stickstoffleerstellen und Zwischengitteratome) und Multilagen ((Ti,Al)N/TiN) auf die Phasenumwandlung in lichtbogenverdampften kubischen (Ti,Al)N-Dünnschichten bei erhöhten Temperaturen. Besonderes Augenmerk liegt auf der Entwicklung der vorteilhaften spinodalen Entmischung in c-TiN und c-AlN und der nachteiligen Bildung von Wurtzit-AlN, sowie der möglichen Anwendung als Hartstoffbeschichtung von Schneidwerkzeugen. c-(Ti1-xAlx)Ny mit unterschiedlichem Al-Anteil und N-Gehalten von y = 0,93 bis 0,75 zeigt mit zunehmenden Stickstoffleerstellen eine Verzögerung der spinodalen Entmischung. Dadurch verschiebt sich die Ausscheidungshärtung um 300 °C zu höheren Temperaturen und die w-AlN-Bildung wird verzögert, während der Einbau von Eigenzwischengitteratomen die Entmischung beschleunigt. Die Hochtemperaturwechselwirkung zwischen Hartmetallsubstrat und Dünnschicht durch Diffusion von Substratelementen in die Schicht nimmt mit steigendem Stickstoffdefizit zu. Stickstoffarme Schichten (y = 0,58 bis 0,40) zeigen während der Wärmebehandlung zusätzliche Phasen wie Ti4AlN3, Ti2AlN, Al5Ti2 und Al3Ti und eine Umwandlung von Ti2AlN in Ti4AlN3 durch Interkalation. Die Multischichtstruktur von TiN/TiAlN führt zu einer oberflächengerichteten spinodalen Entmischung, die das Entmischungsverhalten beeinflusst. Ein gezielter Einsatz dieser Effekte erscheint als ein vielsprechender Weg, um die Leistungsfähigkeit von Schneidwerkzeugen zu verbessern. I denna avhandling behandlas inverkan av punktdefekter (kvävevakanser och interstitialer) och multilagring ((Ti,Al)N/TiN) på högtemperaturfasomvandlingar i tunna arcförångade skikt av kubiska (Ti,Al)N. Störst vikt har lagts på utvecklingen av det fördelaktiga spinodala sönderfallet till c-TiN och c-AlN, den ofördelaktiga omvandlingen till w-AlN och potentialen som hårda skikt i verktygstillämpningar. Tunna c-(Ti1-xAlx)Ny skikt med olika Al-andel och en N-halt mellan (y = 0.93 och 0.75) uppvisar ökad undertryckning av det spinodala sönderfallet med ökat kvävevakanshalt. Detta resulterar i bildandet av w-AlN skiftas upp i temperatur vilket gör att åldershärdningen höjs med 300 °C. Däremot medför närvaron av självinterstitialer ett snabbare sönderfall. Växelverkan mellan hårdmetallsubstraten och de tunna skikten vid hög temperatur ökar med minskad kvävehalt i skiten genom diffusion av atomer från substratet in i filmen. Filmer med låg kvävehalt (y = 0.58 till 0.40) bildar även andra faser så som Ti4AlN3, Ti2AlN, Al5Ti2 och Al3Ti under värmebehandling och fasomvandlingen från Ti2AlN till Ti4AlN3 sker via en mekanism kallad intercalation. Multilagring av TiN/TiAlN resulterar i ett ytriktad spinodalt sönderfall vilket påverkar det totala sönderfallsförloppet. Nyttjande av dessa resultat syns som lovande vägar till förbättrade verktygsegenskaper.
Thin film mechanical behavior and stress presents a technological challenge for materials scientists, physicists and engineers. This book provides a comprehensive coverage of the major issues and topics dealing with stress, defect formation, surface evolution and allied effects in thin film materials. Physical phenomena are examined from the continuum down to the sub-microscopic length scales, with the connections between the structure of the material and its behavior described. Theoretical concepts are underpinned by discussions on experimental methodology and observations. Fundamental scientific concepts are embedded through sample calculations, a broad range of case studies with practical applications, thorough referencing, and end of chapter problems. With solutions to problems available on-line, this book will be essential for graduate courses on thin films and the classic reference for researchers in the field.
This book delivers practical insight into a broad range of fields related to hard coatings, from their deposition and characterization up to the hardening and deformation mechanisms allowing the interpretation of results. The text examines relationships between structure/microstructure and mechanical properties from fundamental concepts, through types of coatings, to characterization techniques. The authors explore the search for coatings that can satisfy the criteria for successful implementation in real mechanical applications.
Selected full text papers from the 17th International Symposium on Metallography, Fractography and Materials Science (2019) Selected, peer-reviewed papers from the 17th International Symposium on Metallography, Fractography and Materials Science (Metallography XVII), April 24 – 26, 2019, Nový Smokovec, High Tatra Mountains, Slovak Republic
Cathodic arcs are among the longest studied yet least understood objects in science. Plasma-generating, tiny spots appear on the cathode; they are highly dynamic and hard to control. With an approach emphasizing the fractal character of cathode spots, strongly fluctuating plasma properties are described such as the presence of multiply charged ions that move with supersonic velocity. Richly illustrated, the book also deals with practical issues, such as arc source construction, macroparticle removal, and the synthesis of dense, well adherent coatings. The book spans a bridge from plasma physics to coatings technology based on energetic condensation, appealing to scientists, practitioners and graduate students alike.
This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.
Symposium proceedings contains information on some of the latest work involving the development, assessment, and application of wear-resistant materials. Nearly 60 papers by authors from more than 10 countries discuss fundamental and applied research in the areas of wear, erosion, and wear-corrosion of materials.