Download Free Pharmaceuticals Book in PDF and EPUB Free Download. You can read online Pharmaceuticals and write the review.

A comprehensive look at existing technologies and processes for continuous manufacturing of pharmaceuticals As rising costs outpace new drug development, the pharmaceutical industry has come under intense pressure to improve the efficiency of its manufacturing processes. Continuous process manufacturing provides a proven solution. Among its many benefits are: minimized waste, energy consumption, and raw material use; the accelerated introduction of new drugs; the use of smaller production facilities with lower building and capital costs; the ability to monitor drug quality on a continuous basis; and enhanced process reliability and flexibility. Continuous Manufacturing of Pharmaceuticals prepares professionals to take advantage of that exciting new approach to improving drug manufacturing efficiency. This book covers key aspects of the continuous manufacturing of pharmaceuticals. The first part provides an overview of key chemical engineering principles and the current regulatory environment. The second covers existing technologies for manufacturing both small-molecule-based products and protein/peptide products. The following section is devoted to process analytical tools for continuously operating manufacturing environments. The final two sections treat the integration of several individual parts of processing into fully operating continuous process systems and summarize state-of-art approaches for innovative new manufacturing principles. Brings together the essential know-how for anyone working in drug manufacturing, as well as chemical, food, and pharmaceutical scientists working on continuous processing Covers chemical engineering principles, regulatory aspects, primary and secondary manufacturing, process analytical technology and quality-by-design Contains contributions from researchers in leading pharmaceutical companies, the FDA, and academic institutions Offers an extremely well-informed look at the most promising future approaches to continuous manufacturing of innovative pharmaceutical products Timely, comprehensive, and authoritative, Continuous Manufacturing of Pharmaceuticals is an important professional resource for researchers in industry and academe working in the fields of pharmaceuticals development and manufacturing.
Market access is the fourth hurdle in the drug development process and the primary driver for global income of any new drug. Without a strategy in place for pricing, showing value for effectiveness and an understanding of the target purchasers’ needs, the drug will fail to reach its intended market value. Introduction to Market Access for Pharmaceuticals is based on an accredited course in this area, taken from the European Market Access University Diploma (EMAUD), and is affiliated with Aix Marseille University. Key Features: The first guide to market access for pharmaceuticals based on tested teaching materials Addresses both pharmaceutical and vaccine products Includes case studies and scenarios Covers market access consdierations for Western Europe, the USA, Japan and China Explains the impact the changing healthcare market will have on your product
The Life-Cycle of Pharmaceuticals in the Environment identifies pathways of entry of pharmaceuticals into the environment, beginning with the role of global prescribing and disposal practices. The book then discusses typical levels of common pharmaceuticals and how they can be determined in natural waters such as raw and treated sewage, and in potable water. In addition, sections examine methods currently available to degrade pharmaceuticals in natural waters and some of their ecotoxicological impacts, along with future considerations and the growing concept of product stewardship. - Encompasses the full lifecycle of common pharmaceuticals, from prescription and dispensing practices to their occurrence in a range of different types of natural waters and their environmental impact - Explores the role of the healthcare system and its affect on users - Beneficial for environmental engineers involved in the design and operation of appropriate degradation technologies of the pharmaceutical prescription and disposal practices
Before now, biological systems could only be expressed in terms of linear relationships, however, as knowledge grows and new techniques of analysis on biological systems is made available, we are realizing the non-linearity of these systems. The concepts and techniques of nonlinear analysis allow for more realistic and accurate models in science. The Future of Pharmaceuticals: A Nonlinear Analysis provides an opportunity to understand the non-linearity of biological systems and its application in various areas of science, primarily pharmaceutical sciences. This book will benefit professionals in pharmaceutical industries, academia, and policy who are interested in an entirely new approach to how we will treat disease in the future. Key Features: Addresses a new approach of nonlinear analysis. Applies a theory of projection to chalk out the future, instead of basing on linear evolution. Provides an opportunity to better understand the non-linearity in biological systems and its applications in various areas of science, primarily pharmaceutical sciences. Helps change the thought process for those looking for answers to their questions which they do not find in the linear relationship approach. Encourages a broader perspective for the creative process of drug development.
The field of solid state characterization is central to the pharmaceutical industry, as drug products are, in an overwhelming number of cases, produced as solid materials. Selection of the optimum solid form is a critical aspect of the development of pharmaceutical compounds, due to their ability to exist in more than one form or crystal structure (polymorphism). These polymorphs exhibit different physical properties which can affect their biopharmaceutical properties. This book provides an up-to-date review of the current techniques used to characterize pharmaceutical solids. Ensuring balanced, practical coverage with industrial relevance, it covers a range of key applications in the field. The following topics are included: Physical properties and processes Thermodynamics Intellectual guidance X-ray diffraction Spectroscopy Microscopy Particle sizing Mechanical properties Vapour sorption Thermal analysis & Calorimetry Polymorph prediction Form selection
New edition of succesful standard reference book for thepharmaceutical industry and pharmaceutical physicians! The Textbook of Pharmaceutical Medicine is the coursebookfor the Diploma in Pharmaceutical Medicine, and is used as astandard reference throughout the pharmaceutical industry. The newedition includes greater coverage of good clinical practice, acompletely revised statistics chapter, and more on safety. Coversthe course information for the Diploma in PharmaceuticalMedicine Fully updated, with new authors Greater coverage of good clinical practice and safety New chapters on regulation of medical devices in Europe andregulation of therapeutic products in Australia
Innovative examination of the early globalization of the pharmaceutical industry, arguing that colonialism was crucial to the worldwide diffusion of modern medicines.
Bioanalysis of Pharmaceuticals: Sample Preparation, Separation Techniques and Mass Spectrometry is the first student textbook on the separation science and mass spectrometry of pharmaceuticals present in biological fluids with an educational presentation of the principles, concepts and applications. It discusses the chemical structures and properties of low- and high-molecular drug substances; the different types of biological samples and fluids that are used; how to prepare the samples by extraction, and how to perform the appropriate analytical measurements by chromatographic and mass spectrometric methods. Bioanalysis of Pharmaceuticals: Sample Preparation, Separation Techniques and Mass Spectrometry: Is an introductory student textbook discussing the different principles and concepts clearly and comprehensively, with many relevant and educational examples Focuses on substances that are administered as human drugs, including low-molecular drug substances, peptides, and proteins Presents both the basic principles that are regularly taught in universities, along with the practical use of bioanalysis as carried out by researchers in the pharmaceutical industry and in hospital laboratories Is aimed at undergraduate students, scientists, technicians and researchers in industry working in the areas of pharmaceutical analyses, biopharmaceutical analyses, biological and life sciences The book includes multiple examples to illustrate the theory and application, with many practical aspects including calculations, thus helping the student to learn how to convert the data recorded by instruments into the real concentration of the drug substances within the biological sample.
High pressure, or high performance, liquid chromatography (HPLC) is the method of choice for checking purity of new drug candidates, monitoring changes during scale up or revision of synthetic procedures, evaluating new formulations, and running control/assurance of the final drug product. HPLC Method Development for Pharmaceuticals provides an extensive overview of modern HPLC method development that addresses these unique concerns. Includes a review and update of the current state of the art and science of HPLC, including theory, modes of HPLC, column chemistry, retention mechanisms, chiral separations, modern instrumentation (including ultrahigh-pressure systems), and sample preparation. Emphasis has been placed on implementation in a pharmaceutical setting and on providing a practical perspective. HPLC Method Development for Pharmaceuticals is intended to be particularly useful for both novice and experienced HPLC method development chemists in the pharmaceutical industry and for managers who are seeking to update their knowledge. - Covers the requirements for HPLC in a pharmaceutical setting including strategies for software and hardware validation to allow for use in a regulated laboratory - Provides an overview of the pharmaceutical development process (clinical phases, chemical and pharmaceutical development activities) - Discusses how HPLC is used in each phase of pharmaceutical development and how methods are developed to support activities in each phase
DIVAnthropological study of the globalization of pharmaceuticals and its effects on local cultures, health, and economics./div