Download Free Pharmaceutical Drug Product Development And Process Optimization Book in PDF and EPUB Free Download. You can read online Pharmaceutical Drug Product Development And Process Optimization and write the review.

Pharmaceutical manufacturers are constantly facing quality crises of drug products, leading to an escalating number of product recalls and rejects. Due to the involvement of multiple factors, the goal of achieving consistent product quality is always a great challenge for pharmaceutical scientists. This volume addresses this challenge by using the Quality by Design (QbD) concept, which was instituted to focus on the systematic development of drug products with predefined objectives to provide enhanced product and process understanding. This volume presents and discusses the vital precepts underlying the efficient, effective, and cost effective development of pharmaceutical drug products. It focuses on the adoption of systematic quality principles of pharmaceutical development, which is imperative in achieving continuous improvement in end-product quality and also leads to reducing cost, time, and effort, while meeting regulatory requirements. The volume covers the important new advances in the development of solid oral dosage forms, modified release oral dosage forms, parenteral dosage forms, semisolid dosage forms, transdermal drug, delivery systems, inhalational dosage forms, ocular drug delivery systems, nanopharmaceutical products, and nanoparticles for oral delivery.
Pharmaceutical Quality by Design: Principles and Applications discusses the Quality by Design (QbD) concept implemented by regulatory agencies to ensure the development of a consistent and high-quality pharmaceutical product that safely provides the maximum therapeutic benefit to patients. The book walks readers through the QbD framework by covering the fundamental principles of QbD, the current regulatory requirements, and the applications of QbD at various stages of pharmaceutical product development, including drug substance and excipient development, analytical development, formulation development, dissolution testing, manufacturing, stability studies, bioequivalence testing, risk and assessment, and clinical trials. Contributions from global leaders in QbD provide specific insight in its application in a diversity of pharmaceutical products, including nanopharmaceuticals, biopharmaceuticals, and vaccines. The inclusion of illustrations, practical examples, and case studies makes this book a useful reference guide to pharmaceutical scientists and researchers who are engaged in the formulation of various delivery systems and the analysis of pharmaceutical product development and drug manufacturing process. - Discusses vital QbD precepts and fundamental aspects of QbD implementation in the pharma, biopharma and biotechnology industries - Provides helpful illustrations, practical examples and research case studies to explain QbD concepts to readers - Includes contributions from global leaders and experts from academia, industry and regulatory agencies
Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.
Pharmaceutical product development is a multidisciplinary activity involving extensive efforts in systematic product development and optimization in compliance with regulatory authorities to ensure the quality, efficacy and safety of resulting products.Pharmaceutical Product Development equips the pharmaceutical formulation scientist with extensive
This volume presents and discusses the vital precepts underlying the efficient, effective, and cost-effective development of pharmaceutical drug products. It focuses on the adoption of systematic quality principles of pharmaceutical development.
Pharmaceutical manufacturers are constantly facing quality crises of drug products, leading to an escalating number of product recalls and rejects. Due to the involvement of multiple factors, the goal of achieving consistent product quality is always a great challenge for pharmaceutical scientists. This volume addresses this challenge by using the Quality by Design (QbD) concept, which was instituted to focus on the systematic development of drug products with predefined objectives to provide enhanced product and process understanding. This volume presents and discusses the vital precepts underlying the efficient, effective, and cost effective development of pharmaceutical drug products. It focuses on the adoption of systematic quality principles of pharmaceutical development, which is imperative in achieving continuous improvement in end-product quality and also leads to reducing cost, time, and effort, while meeting regulatory requirements. The volume covers the important new advances in the development of solid oral dosage forms, modified release oral dosage forms, parenteral dosage forms, semisolid dosage forms, transdermal drug, delivery systems, inhalational dosage forms, ocular drug delivery systems, nanopharmaceutical products, and nanoparticles for oral delivery.
How to Develop Robust Solid Oral Dosage Forms from Conception to Post-Approval uses a practical and hands-on approach to cover the development process of solid oral dosage forms in one single source. The book details all of the necessary steps from formulation through the post-approval phase and contains industry case studies, real world advice, and troubleshooting tips. By merging the latest scientific information with practical instructions, this book provides pharmaceutical scientists in formulation research and development with a concrete look at the key aspects in the development of solid oral dosage forms. - Focuses on important topics, such as robustness, bioavailability, formulation design, continuous processing, stability tests, modified release dosage forms, international guidelines, process scale-up, and much more - Part of the Expertise in Pharmaceutical Process Technology series edited by Michael Levin - Discusses common, real-world problems and offers both theoretical and practical solutions to these everyday issues
This book volume provides complete and updated information on the applications of Design of Experiments (DoE) and related multivariate techniques at various stages of pharmaceutical product development. It discusses the applications of experimental designs that shall include oral, topical, transdermal, injectables preparations, and beyond for nanopharmaceutical product development, leading to dedicated case studies on various pharmaceutical experiments through illustrations, art-works, tables and figures. This book is a valuable guide for all academic and industrial researchers, pharmaceutical and biomedical scientists, undergraduate and postgraduate research scholars, pharmacists, biostatisticians, biotechnologists, formulations and process engineers, regulatory affairs and quality assurance personnel.
Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed. This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized. - Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products - Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years - Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry