Download Free Permafrost Soils Book in PDF and EPUB Free Download. You can read online Permafrost Soils and write the review.

Most of the Earth’s biosphere is characterized by low temperatures. Vast areas (>20%) of the soil ecosystem are permanently frozen or are unfrozen for only a few weeks in summer. Permafrost regions occur at high latitudes and also at high ele- tions; a significant part of the global permafrost area is represented by mountains. Permafrost soils are of global interest, since a significant increase in temperature is predicted for polar regions. Global warming will have a great impact on these soils, especially in northern regions, since they contain large amounts of organic carbon and act as carbon sinks, and a temperature increase will result in a release of carbon into the atmosphere. Additionally, the intensified release of the clima- relevant tracer gas methane represents a potential environmental harzard. Significant numbers of viable microorganisms, including bacteria, archaea, p- totrophic cyanobacteria and green algae, fungi and protozoa, are present in per- frost, and the characteristics of these microorganisms reflect the unique and extreme conditions of the permafrost environment. Remarkably, these microorg- isms have been reported to be metabolically active at subzero temperatures, even down to ?20°C.
This book provides a cross-disciplinary overview of permafrost and the carbon cycle by providing an introduction into the geographical distribution of permafrost, with a focus on the distribution of permafrost and its soil carbon reservoirs. The chapters explain the basic physical properties and processes of permafrost soils: ice, mineral and organic components, and how these interact with climate, vegetation and geomorphological processes. In particular, the book covers the role of the large quantities of ice in many permafrost soils which are crucial to understanding carbon cycle processes. An explanation is given on how permafrost becomes loaded with ice and carbon. Gas hydrates are also introduced. Structures and processes formed by the intense freeze-thaw action in the active layer are considered (e.g. ice wedging, cryoturbation), and the processes that occur as the permafrost thaws, (pond and lake formation, erosion). The book introduces soil carbon accumulation and decomposition mechanisms and how these are modified in a permafrost environment. A separate chapter deals with deep permafrost carbon, gas reservoirs and recently discovered methane emission phenomena from regions such as Northwest Siberia and the Siberian yedoma permafrost.
This volume provides a comprehensive coverage of the principal extreme soil ecosystems of natural and anthropogenic origin. Extreme soils oppose chemical or physical limits to colonization by most soil organisms and present the microbiologist with exciting opportunities. Described here are a range of fascinating environments from permafrost to Martian soils. The book includes chapters on basic research in addition to applications in biotechnology and bioremediation.
"Upholding the high standard of quality set by the previous edition, this two-volume second edition offers a vast array of recent peer-reviewed articles. It showcases research and practices with added sections on ISTIC-World Soil Information, root growth and agricultural management, nitrate leaching management, podzols, paramos soils, water repellant soils, rare earth elements, and more. With hundreds of entries covering tillage, irrigation, erosion control, ground water, and soil degradation, the book offers quick access to all branches of soil science, from mineralology and physics, to soil management, restoration, and global warming."--Publisher's website.
Cryosols – permafrost – occupy a unique part of the earth and have properties greatly different from other soils. They also occur where the greatest impact of global warming is predicted. This is the first book bring together the leading researchers in the area of permafrost soils to produce a review of the geography, cryogenic soil forming processes, ecological processes, classification and use of soils that are affected by permafrost.
This book provides a general survey of Geocryology, which is the study of frozen ground called permafrost. Frozen ground is the product of cold climates as well as a variety of environmental factors. Its major characteristic is the accumulation of large quantities of ice which may exceed 90% by volume. Soil water changing to ice results in ground heaving, while thawing of this ice produces ground subsidence often accompanied by soil flowage. Permafrost is very susceptible to changes in weather and climate as well as to changes in the microenvironment. Cold weather produces contraction of the ground, resulting in cracking of the soil as well as breakup of concrete, rock, etc. Thus permafrost regions have unique landforms and processes not found in warmer lands. The book is divided into three parts. Part 1 provides an introduction to the characteristics of permafrost. Four chapters deal with its definition and characteristics, the unique processes operating there, the factors affecting it, and its general distribution. Part 2 consists of seven chapters describing the characteristic landforms unique to these areas and the processes involved in their formation. Part 3 discusses the special problems encountered by engineers in construction projects including settlements, roads and railways, the oil and gas industry, mining, and the agricultural and forest industries. The three authors represent three countries and three language groups, and together have over 120 years of experience of working in permafrost areas throughout the world. The book contains over 300 illustrations and photographs, and includes an extensive bibliography in order to introduce the interested reader to the large current literature. Finalist of the 2019 PROSE Awards.
During the last decades, soil organic carbon (SOC) attracted the attention of a much wider array of specialists beyond agriculture and soil science, as it was proven to be one of the most crucial components of the earth’s climate system, which has a great potential to be managed by humans. Soils as a carbon pool are one of the key factors in several Sustainable Development Goals, in particular Goal 15, “Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification and halt and reverse land degradation and halt biodiversity loss” with the SOC stock being explicitly cited in Indicator 15.3.1. This technical manual is the first attempt to gather, in a standardized format, the existing data on the impacts of the main soil management practices on SOC content in a wide array of environments, including the advantages, drawbacks, and constraints. This manual presents different sustainable soil management (SSM) practices at different scales and in different contexts, supported by case studies that have been shown with quantitative data to have a positive effect on SOC stocks and successful experiences of SOC sequestration in practical field applications. Volume 2 includes a description of hot spots of SOC stocks. This manual defines hot spots of SOC as areas that represent a proportionally little of the global land surface but on which SOC storage is highly effective; bright spots as large land areas with low SOC stocks per km2 that represent a potential for further carbon sequestration.
This book provides an overview of the distribution, properties, and function of soils in the U.S., including Alaska, Hawaii, and its Caribbean territories. It discusses the history of soil surveys and pedological research in the U.S., and offers general descriptions of the country’s climate, geology and geomorphology. For each Land Resource Region (LRR) – a geographic/ecological region of the country characterized by its own climate, geology, landscapes, soils, and agricultural practices – there is a chapter with details of the climate, geology, geomorphology, pre-settlement and current vegetation, and land use, as well as the distribution and properties of major soils including their genesis, classification, and management challenges. The final chapters address topics such as soils and humans, and the future challenges for soil science and soil surveys in the U.S. Maps of soil distribution, pedon descriptions, profile images, and tables of properties are included throughout the text.
The Handbook of Soil Science provides a resource rich in data that gives professional soil scientists, agronomists, engineers, ecologists, biologists, naturalists, and their students a handy reference about the discipline of soil science. This handbook serves professionals seeking specific, factual reference information. Each subsection includes a description of concepts and theories; definitions; approaches; methodologies and procedures; tabular data; figures; and extensive references.