Download Free Pedestrian And Evacuation Dynamics 2003 Book in PDF and EPUB Free Download. You can read online Pedestrian And Evacuation Dynamics 2003 and write the review.

The international conference on "Pedestrian and Evacuation Dynamics", held on February 27-29, 2008 at Wuppertal University in Germany, was the fourth in this series after successful meetings in Duisburg (2001), Greenwich (2003) and Vienna (2005). The conference was aimed at improving the scientific exchange between scientists, experts and practitioners of various fields of pedestrian and evacuation dynamics and featured: the analysis of evacuation processes and pedestrian motion, modeling of pedestrian dynamics in various situations, experiments on pedestrian dynamics, human behavior research, regulatory action. All these topics are included in this book to give a broad and state-of-the-art overview of pedestrian and evacuation dynamics.
Due to an increasing number of reported catastrophes all over the world, the safety especially of pedestrians today, is a dramatically growing field of interest, both for practitioners as well as scientists from various disciplines. The questions arising mainly address the dynamics of evacuating people and possible optimisations of the process by changing the architecture and /or the procedure.
An aging population, increasing obesity and more people with mobility impairments are bringing new challenges to the management of routine and emergency people movement in many countries. These population challenges, coupled with the innovative designs being suggested for both the built environment and other commonly used structures (e.g., transportation systems) and the increasingly complex incident scenarios of fire, terrorism, and large-scale community disasters, provide even greater challenges to population management and safety. Pedestrian and Evacuation Dynamics, an edited volume, is based on the Pedestrian and Evacuation Dynamics (PED) 5th International 2010 conference, March 8th-10th 2010, located at the National Institute of Standards and Technology, Gaithersburg, MD, USA. This volume addresses both pedestrian and evacuation dynamics and associated human behavior to provide answers for policy makers, designers, and emergency management to help solve real world problems in this rapidly developing field. Data collection, analysis, and model development of people movement and behavior during nonemergency and emergency situations will be covered as well.
The 6th International Conference on Pedestrian and Evacuation Dynamics (PED2012) showcased research on human locomotion. This book presents the proceedings of PED2012. Humans have walked for eons; our drive to settle the globe began with a walk out of Africa. However, much remains to discover. As the world moves toward sustainability while racing to assess and accommodate climate change, research must provide insight on the physical requirements of walking, the dynamics of pedestrians on the move and more. We must understand, predict and simulate pedestrian behaviour, to avoid dangerous situations, to plan for emergencies, and not least, to make walking more attractive and enjoyable. PED2012 offered 70 presentations and keynote talks as well as 70 poster presentations covering new and improved mathematical models, describing new insights on pedestrian behaviour in normal and emergency cases and presenting research based on sensors and advanced observation methods. These papers offer a starting point for innovative new research, building a strong foundation for the next conference and for future research.
This book constitutes the refereed proceedings of the 13th International Conference of the Italian Association for Artificial Intelligence, AI*IA 2013, held in Turin, Italy, in December 2013. The 45 revised full papers were carefully reviewed and selected from 86 submissions. The conference covers broadly the many aspects of theoretical and applied Artificial Intelligence as follows: knowledge representation and reasoning, machine learning, natural language processing, planning, distributed AI: robotics and MAS, recommender systems and semantic Web and AI applications.
Studies of pedestrian behaviour have gained attention in a variety of disciplines. Different technologies have been used to collect data about pedestrian movement patterns. This book aims to document these developments in research and modelling approaches. It includes modelling approaches such as cellular automata models and fluid dynamics.
There are many applications of computer animation and simulation where it is necessary to model virtual crowds of autonomous agents. Some of these applications include site planning, education, entertainment, training, and human factors analysis for building evacuation. Other applications include simulations of scenarios where masses of people gather, flow, and disperse, such as transportation centers, sporting events, and concerts. Most crowd simulations include only basic locomotive behaviors possibly coupled with a few stochastic actions. Our goal in this survey is to establish a baseline of techniques and requirements for simulating large-scale virtual human populations. Sometimes, these populations might be mutually engaged in a common activity such as evacuation from a building or area; other times they may be going about their individual and personal agenda of work, play, leisure, travel, or spectator. Computational methods to model one set of requirements may not mesh well with good approaches to another. By including both crowd and individual goals and constraints into a comprehensive computational model, we expect to simulate the visual texture and contextual behaviors of groups of seemingly sentient beings. Table of Contents: Introduction / Crowd Simulation Methodology Survey / Individual Differences in Crowds / Framework (HiDAC + MACES + CAROSA) / HiDAC: Local Motion / MACES: Wayfinding with Communication and Roles / CAROSA: Functional Crowds / Initializing a Scenario / Evaluating Crowds
Over the last several years there has been a growing interest in developing computational methodologies for modeling and analyzing movements and behaviors of ‘crowds' of people. This interest spans several scientific areas that includes Computer Vision, Computer Graphics, and Pedestrian Evacuation Dynamics. Despite the fact that these different scientific fields are trying to model the same physical entity (i.e. a crowd of people), research ideas have evolved independently. As a result each discipline has developed techniques and perspectives that are characteristically their own. The goal of this book is to provide the readers a comprehensive map towards the common goal of better analyzing and synthesizing the pedestrian movement in dense, heterogeneous crowds. The book is organized into different parts that consolidate various aspects of research towards this common goal, namely the modeling, simulation, and visual analysis of crowds. Through this book, readers will see the common ideas and vision as well as the different challenges and techniques, that will stimulate novel approaches to fully grasping “crowds."