Download Free Passive And Active Structural Vibration Control In Civil Engineering Book in PDF and EPUB Free Download. You can read online Passive And Active Structural Vibration Control In Civil Engineering and write the review.

Base isolation, passive energy dissipation and active control represent three innovative technologies for protection of structures under environmental loads. Increasingly, they are being applied to the design of new structures or to the retrofit of existing structures against wind, earthquakes and other external loads. This book, with contributions from leading researchers from Japan, Europe, and the United States, presents a balanced view of current research and world-wide development in this exciting and fast expanding field. Basic principles as well as practical design and implementational issues associated with the application of base isolation systems and passive and active control devices to civil engineering structures are carefully addressed. Examples of structural applications are presented and extensively discussed.
Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory. Also links between the different applications in structural control are shown.
This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.
"This book addresses the design optimization of active and passive control systems including earthquake engineering and tuned mass damper research topics and their link"--
The recent introduction of active and passive structural control methods has given structural designers powerful tools for performance-based design. However, structural engineers often lack the tools for the optimal selection and placement of such systems. In Building Control with Passive Dampers , Takewaki brings together most the reliable, state-of-the-art methods in practice around the world, arming readers with a real sense of how to address optimal selection and placement of passive control systems. The first book on optimal design, sizing, and location selection of passive dampers Combines theory and practical applications Describes step-by-step how to obtain optimal damper size and placement Covers the state-of-the-art in optimal design of passive control Integrates the most reliable techniques in the top literature and used in practice worldwide Written by a recognized expert in the area MATLAB code examples available from the book’s Companion Website This book is essential for post-graduate students, researchers, and design consultants involved in building control. Professional engineers and advanced undergraduates interested in seismic design, as well as mechanical engineers looking for vibration damping techniques, will also find this book a helpful reference. Code examples available at www.wiley.com/go/takewaki
My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Structural control represents a high technology proposal for civil engineering innovation. This book collects the invited papers presented at the 3rd International Workshop on Structural Control. The geographical coverage and the high quality of the invited speaker's contributions make the book a unique update in the areas of intelligent structures, structural control and smart materials for civil and infrastructure engineers. Contents: An Identification Algorithm for Feedback Active Control (N D Anh); Application of Control Techniques to Masonry and Monumental Constructions (A Baratta et al.); Monitoring of Infrastructures in the Marine Environment (A Del Grosso); Health Monitoring and Optimum Maintenance Programs for Structures in Seismic Zones (L Esteva & E Heredia-Zavoni); Outline of Safety Evaluation of Structural Response-Control Buildings and Smart Structural Systems as Future Trends (K Yoshikazu & T Hiroyuki); Recent Developments in Smart Structures Research in India (S Narayanan & V Balamurugan); Perspective of Application of Active Damping of Cable Structures (A Preumont & F Bossens); Parametric and Nonparametric Adaptive Identification of Nonlinear Structural Systems (A W Smyth et al.); Active Control Requirements in Railway Projects (H Wenzel); and other papers. Readership: Civil engineers and scientists working in the areas of intelligent systems and smart materials.
For all rotational machines, the analysis of dynamic stresses and the resulting vibrations is an important subject. When it comes to helicopters and piston engines, this analysis becomes crucial. From the design of parts working under stress to the reduction of the vibration levels, the success of a project lies mainly in the hands of the dynamicists. The authors have combined their talents and experience to provide a complete presentation on the issues involved. Part one describes, in concrete terms, the main dynamic phenomena and how they can be observed in reality. Part two presents information about the modeling methods required to understand the dynamic phenomena and develop solutions capable of eliminating the most serious effects.
With Active Control of Structures, two global pioneers present the state-of-the-art in the theory, design and application of active vibration control. As the demand for high performance structural systems increases, so will the demand for information and innovation in structural vibration control; this book provides an effective treatise of the subject that will meet this requirement. The authors introduce active vibration control through the use of smart materials and structures, semi-active control devices and a variety of feedback options; they then discuss topics including methods and devices in civil structures, modal analysis, active control of high-rise buildings and bridge towers, active tendon control of cable structures, and active and semi-active isolation in mechanical structures. Active Control of Structures: Discusses new types of vibration control methods and devices, including the newly developed reduced-order physical modelling method for structural control; Introduces triple high-rise buildings connected by active control bridges as devised by Professor Seto; Offers a design strategy from modelling to controller design for flexible structures; Makes prolific use of practical examples and figures to describe the topics and technology in an intelligible manner.
Intelligent Vibration Control in Civil Engineering Structures provides readers with an all-encompassing view of the theoretical studies, design methods, real-world implementations, and applications relevant to the topic The book focuses on design and property tests on different intelligent control devices, innovative control strategies, analysis examples for structures with intelligent control devices, and designs and tests for intelligent controllers. - Focuses on the principles, methods, and applications of intelligent vibration control in civil engineering - Covers intelligent control, including active and semi-active control - Includes comprehensive contents, such as design and properties of different intelligent control devices, control strategies, and dynamic analysis, intelligent controller design, numerical examples, and experimental data