Download Free Particulate Products Book in PDF and EPUB Free Download. You can read online Particulate Products and write the review.

A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.
Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require – at the typical particulate concentrations of these products – that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products.
With this unique and comprehensive text, readers will gain the quantitative tools needed to engineer the particulate processes and products that are ubiquitous in modern life. Covering a series of particle and particulate delivery form design processes, with emphasis on design and operation to control particle attributes, and supported by many worked examples, it is essential reading for students and practitioners. Topics covered include a range of particle design processes such as crystallization and precipitation, granulation, grinding, aerosol processes and spray drying, as well as forms of delivery such as granules, tablets, dry powders, and aerosols. Readers will learn from real-world examples how the primary particle properties and the structure and properties of the delivery form can lead to high performance products, ranging from pharmaceuticals, consumer goods and foods, to specialty chemicals, paints, agricultural chemicals and minerals.
This work furnishes students and practising engineers with a guide to the principles of industrial drying of particulate and loose solids and with advice on improved design procedures. The book focuses on those processes considered by the author to be the most effective in the current field.
Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.
This edited volume presents most techniques and methods that have been developed by material scientists, chemists, chemical engineers and physicists for the commercial production of particulate materials, ranging from the millimeter to the nanometer scale. The scope includes the physical and chemical background, experimental optimization of equipment and procedures, as well as an outlook on future methods. The books addresses issues of industrial importance such as specifications, control parameter(s), control strategy, process models, energy consumption and discusses the various techniques in relation to potential applications. In addition to the production processes, all major unit operations and characterization methods are described in this book. It differs from other books which are devoted to a single technique or a single material. Contributors to this book are acknowledged experts in their field. The aim of the book is to facilitate comparison of the different unit operations leading to optimum equipment choices for the production, handling and storage of particulate materials. An advantage of this approach is that unit operations that are common in one field of application are made accessible to other fields. The overall focus is on industrial application and the book includes some concrete examples. The book is an essential resource for students or researchers who work in collaboration with manufacturing industries or who are planning to make the switch from academia to industry.
Naturally occurring or manufactured through chemical and/or physical processes, particulate materials are substances consisting of individual particles which have significance to the global economy, society and environments. Due to the diversity and intrinsic nature, manufacturing, handling and processing of particulate materials still face numerous challenges. Aimed at addressing these challenges, this book contains a selection of papers discussing the state-of-the-art research in particulate materials science that were presented at the UK-China Particle Technology Forum III held at Birmingham, UK in 2011. Classified into four distinct topics namely synthesis, characterisation, processing and modelling, the chapters showcase the advances in these areas including a range of advanced synthesis methods for example, spray-pyrolysis, supercritical fluid synthesis assisted with ultrasound, continuous synthesis using supercritical water, hydrothermal synthesis of nano-particulate materials and jet milling. For characterisation, various methods for characterising particulate materials at both particle and system levels are introduced and how these properties affect the behaviour of particulate materials in various processes, such as inhalation, filling, and consolidation, are discussed. In the processing section, recent advances such as capsule filling, micro-dosing, dry granulation, roll compaction, milling, and more are presented. The last section concerns mathematical and numerical modelling in particulate materials, for which the book includes both analytical methods and advanced numerical methods, such as discrete element methods (DEM), computational fluid dynamics (CFD), lattice Boltzmann methods (LBM), coupled DEM/CFD and DEM/LBM, and their applications. Particulate Materials is aimed at research communities dealing with these diverse materials, and scientists and engineers in powder handling industries, such as pharmaceutical, food, fine chemical and detergents.
Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.