Download Free Particulate Interactions In Dry Powder Formulation For Inhalation Book in PDF and EPUB Free Download. You can read online Particulate Interactions In Dry Powder Formulation For Inhalation and write the review.

Interactions between drug particulates are crucial in determining drug dispersion and deaggregation, and ultimately delivery efficiency. This book combines principles established in surface and colloidal chemistry with pharmaceutical powder technology. It discusses some of the factors affecting particulate interactions, and particle-fluid interaction in the respiratory tract. It review some of the studies carried out in dry powder formulation development, and proposes possible strategies in improving DPI efficiency. The majority of these principles are applicable to other pharmaceutical solid dosage forms (e.g. tablets and capsules).
This book focuses on the aerosol treatment of lung diseases, recent improvements in the understanding of proper dosage, and major innovations in device technology applied to clinical practice. Examines the behavior of inspired spherical particles in the respiratory tract!Featuring over 1300 references, drawings, tables, and photographs.
This book is a compilation of most works published during 2000-2016 in the area of dry powder inhalers, especially related to the issues with formulation and device design. The dry powder inhalers aim to deliver the medication to the respiratory airways. It is suitable for postgraduate students and researchers who work in the areas of dry powder inhalers. It provides some background knowledge in size characterization, flow properties, forces, and interaction of air and particles. It also ends with in vitro quality control of dry powder inhalers. This book was finished in Hawaii where the author spent his time during April 2016. Thank you to Prince of Songkla University for the financial support. The author had to work very hard for one month without a holiday. Thank you to Professor Aran Pattanothai for overseeing this work to make sure that the researchers were on schedule all the time. Thanks to the authors staff at the Graduate School, Prince of Songkla University who had to work hard and be patient when the author was not in the office. Thanks to the authors wife and son who had to wait for him at home in Thailand. Thanks to Dr Tan Suwandecha and Dr Janwit Dechraksa for their great efforts in copy editing and compiling all the references. The author also thanks Dr Somchai Sawatdee and Dr Dhamodharan Bakkiyaraj for their comments, and Dr Padmavathi Alwar Ramanujam for her proofreading. The greatest help was from Professor Alan Coombes, Professor Pornanong Aramwit, and Dr Brian Hodgeson for their criticisms and comments to make this book readable.
The explores the cutting-edge technology of polymer coatings. It discusses fundamentals, fabrication strategies, characterization techniques, and allied applications in fields such as corrosion, food, pharmaceutical, biomedical systems and electronics. It also discusses a few new innovative self-healing, antimicrobial and superhydrophobic polymer coatings. Current industrial applications and possible potential activities are also discussed.
Explore this comprehensive discussion of the application of physiologically- and physicochemical-based models to guide drug delivery edited by leading experts in the field Drug Delivery Approaches: Perspectives from Pharmacokinetics and Pharmacodynamics delivers a thorough discussion of drug delivery options to achieve target profiles and approaches as defined by physical and pharmacokinetic models. The book offers an overview of drug absorption and physiological models, chapters on oral delivery routes with a focus on both PBPK and multiple dosage form options. It also provides an explanation of the pharmacokinetics of the formulation of drugs delivered by systemic transdermal routes. The distinguished editors have included practical and accessible resources that address the biological and delivery approaches to pulmonary and mucosal delivery of drugs. Emergency care settings are also described, with explorations of the relationship between parenteral infusion profiles and PK/PD. The future of drug delivery is addressed via discussions of virtual experiments to elucidate mechanisms and approaches to drug delivery and personalized medicine. Readers will also benefit from the inclusion of: A thorough introduction to the utility of mathematical models in drug development and delivery An exploration of the techniques and applications of physiologically based models to drug delivery Discussions of oral delivery and pharmacokinetic models and oral site-directed delivery A review of integrated transdermal delivery and pharmacokinetics in development An examination of virtual experiment methods for integrating pharmacokinetic, pharmacodynamic, and drug delivery mechanisms Alternative endpoints to pharmacokinetics for topical delivery Perfect for researchers, industrial scientists, graduate students, and postdoctoral students in the area of pharmaceutical science and engineering, Drug Delivery Approaches: Perspectives from Pharmacokinetics and Pharmacodynamics will also earn a place in the libraries of formulators, pharmacokineticists, and clinical pharmacologists.
Interactions between drug particulates are crucial in determining drug dispersion and deaggregation, and ultimately delivery efficiency. This book combines principles established in surface and colloidal chemistry with pharmaceutical powder technology. It discusses some of the factors affecting particulate interactions, and particle-fluid interaction in the respiratory tract. It review some of the studies carried out in dry powder formulation development, and proposes possible strategies in improving DPI efficiency. The majority of these principles are applicable to other pharmaceutical solid dosage forms (e.g. tablets and capsules).
This unique reference provides the first systematic coverage available in a single-source volume on the application of materials science techniques to the pharmaceutical field-offering a comprehensive program for the physical characterization of raw materials, drug substances, and formulated products.
The respiratory tract has been used to deliver biologically active chemicals into the human body for centuries. However, the lungs are complex in their anatomy and physiology, which poses challenges to drug delivery. Inhaled formulations are generally more sophisticated than those for oral and parenteral administration. Pulmonary drug development is therefore a highly specialized area because of its many unique issues and challenges. Rapid progress is being made and offers novel solutions to existing treatment problems. Advances in Pulmonary Drug Delivery highlights the latest developments in this field.
A comprehensive guide to the current research, major challenges, and future prospects of controlled drug delivery systems Controlled drug delivery has the potential to significantly improve therapeutic outcomes, increase clinical benefits, and enhance the safety of drugs in a wide range of diseases and health conditions. Fundamentals of Drug Delivery provides comprehensive and up-to-date coverage of the essential principles and processes of modern controlled drug delivery systems. Featuring contributions by respected researchers, clinicians, and pharmaceutical industry professionals, this edited volume reviews the latest research in the field and addresses the many issues central to the development of effective, controlled drug delivery. Divided in three parts, the book begins by introducing the concept of drug delivery and discussing both challenges and opportunities within the rapidly evolving field. The second section presents an in-depth critique of the common administration routes for controlled drug delivery, including delivery through skin, the lungs, and via ocular, nasal, and otic routes. The concluding section summarizes the current state of the field and examines specific issues in drug delivery and advanced delivery technologies, such as the use of nanotechnology in dermal drug delivery and advanced drug delivery systems for biologics. This authoritative resource: Covers each main stage of the drug development process, including selecting pharmaceutical candidates and evaluating their physicochemical characteristics Describes the role and application of mathematical modelling and the influence of drug transporters in pharmacokinetics and drug disposition Details the physiology and barriers to drug delivery for each administration route Presents a historical perspective and a look into the possible future of advanced drug delivery systems Explores nanotechnology and cell-mediated drug delivery, including applications for targeted delivery and toxicological and safety issues Includes comprehensive references and links to the primary literature Edited by a team of of internationally-recognized experts, Fundamentals of Drug Delivery is essential reading for researchers, industrial scientists, and advanced students in all areas of drug delivery including pharmaceutics, pharmaceutical sciences, biomedical engineering, polymer and materials science, and chemical and biochemical engineering.