Download Free Particles In Therapeutic Protein Formulations Book in PDF and EPUB Free Download. You can read online Particles In Therapeutic Protein Formulations and write the review.

This book describes how to address the analysis of aggregates and particles in protein pharmaceuticals, provides a comprehensive overview of current methods and integrated approaches used to quantify and characterize aggregates and particles, and discusses regulatory requirements. Analytical methods covered in the book include separation, light scattering, microscopy, and spectroscopy.
Therapeutic protein drug products provides a comprehensive overview of therapeutic protein drug products, with an emphasis on formulation beginning in the laboratory, followed by manufacturing and administration in the clinic. A list of many commercial therapeutic drug products are described and include the product name, dosages, active concentration, buffer, excipients, Ph, container type and route of administration. The laboratory formulation sections focus on the most common buffers, excipients, and Ph ranges that are commonly tested in addition to systematic approaches. A brief section on biophysical and analytical analysis is also provided. Properties of therapeutic protein formulations are described and include opalescence, phase separation, color, and subvisible particles. An emphasis is placed on material and process testing to ensure success during manufacturing. The drug product manufacturing process, which includes the process of compounding to filling, is also covered. Methods of delivery in the clinic are addressed, as well as delivery strategies. Finally, a perspective on the regulatory requirements for therapeutic protein formulations is discussed.
This book gives pharmaceutical scientists an up-to-date resource on protein aggregation and its consequences, and available methods to control or slow down the aggregation process. While significant progress has been made in the past decade, the current understanding of protein aggregation and its consequences is still immature. Prevention or even moderate inhibition of protein aggregation has been mostly experimental. The knowledge in this book can greatly help pharmaceutical scientists in the development of therapeutic proteins, and also instigate further scientific investigations in this area. This book fills such a need by providing an overview on the causes, consequences, characterization, and control of the aggregation of therapeutic proteins.
Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.
In this volume, the authors discuss the many significant challenges currently faced in biotechnology dosage form development, providing guidance, shared experience and thoughtful reflection on how best to address these potential concerns. As the field of therapeutic recombinant therapeutic proteins enters its fourth decade and the market for biopharmaceuticals becomes increasingly competitive, companies are increasingly dedicating resources to develop innovative biopharmaceuticals to address unmet medical needs. Often, the pharmaceutical development scientist is encountering challenging pharmaceutical properties of a given protein or by the demands placed on the product by stability, manufacturing and preclinical or clinical expectations, as well as the evolving regulatory expectations and landscape. Further, there have been new findings that require close assessment, as for example those related to excipient quality, processing, viscosity and device compatibility and administration, solubility and opalescence and container-closure selection. The literature varies widely in its discussion of these critical elements and consensus does not exist. This topic is receiving a great deal of attention within the biotechnology industry as well as with academic researchers and regulatory agencies globally. Therefore, this book is of interest for business leaders, researchers, formulation and process development scientists, analytical scientists, QA and QC officers, regulatory staff, manufacturing leaders and regulators active in the pharmaceutical and biotech industry, and expert reviewers in regulatory agencies.
A comprehensive source of information about modern drying technologies that uniquely focus on the processing of pharmaceuticals and biologicals Drying technologies are an indispensable production step in the pharmaceutical industry and the knowledge of drying technologies and applications is absolutely essential for current drug product development. This book focuses on the application of various drying technologies to the processing of pharmaceuticals and biologicals. It offers a complete overview of innovative as well as standard drying technologies, and addresses the issues of why drying is required and what the critical considerations are for implementing this process operation during drug product development. Drying Technologies for Biotechnology and Pharmaceutical Applications discusses the state-of-the-art of established drying technologies like freeze- and spray- drying and highlights limitations that need to be overcome to achieve the future state of pharmaceutical manufacturing. The book also describes promising next generation drying technologies, which are currently used in fields outside of pharmaceuticals, and how they can be implemented and adapted for future use in the pharmaceutical industry. In addition, it deals with the generation of synergistic effects (e.g. by applying process analytical technology) and provides an outlook toward future developments. -Presents a full technical overview of well established standard drying methods alongside various other drying technologies, possible improvements, limitations, synergies, and future directions -Outlines different drying technologies from an application-oriented point of view and with consideration of real world challenges in the field of drug product development -Edited by renowned experts from the pharmaceutical industry and assembled by leading experts from industry and academia Drying Technologies for Biotechnology and Pharmaceutical Applications is an important book for pharma engineers, process engineers, chemical engineers, and others who work in related industries.
This volume reviews protein stability and the analytical and biophysical characterization of proteins. It emphasizes drug delivery approaches, especially local delivery through the skin. Including both academic and industrial perspectives from such companies as Genentech, Amgen, and Merck, the book also discusses novel drug delivery polymers and the development of pharmaceutical protein formulations.
This book provides a comprehensive examination of the newest biopharmaceutical drugs. Among the drugs discussed are ones in the categories of monoclonal antibodies for in-vivo use, cytokines, growth factors, enzymes, immunomodulators, thrombolytics, and immonotherapies including vaccines. Additionally, the volume examines new and emerging technologies, and contains a review of the Human Genome Project.
This book covers the physical side of colloidal science from the individual forces acting between particles smaller than a micrometer that are suspended in a liquid, through the resulting equilibrium and dynamic properties. A variety of internal forces both attractive and repulsive act in conjunction with Brownian motion and the balance between them all decides the phase behaviour. On top of this various external fields, such as gravity or electromagnetic fields, diffusion and non-Newtonian rheology produce complex effects, each of which is of important scientific and technological interest. The authors aim to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterised model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of the technological problems and design critical experiments. The main prerequisites for understanding the book are basic fluid mechanics, statistical mechanics and electromagnetism, though self contained reviews of each subject are provided at appropriate points. Some facility with differential equations is also necessary. Exercises are included at the end of each chapter, making the work suitable as a textbook for graduate courses in chemical engineering or applied mathematics. It will also be useful as a reference for individuals in academia or industry undertaking research in colloid science.
A real-world guide to the production and manufacturing of biopharmaceuticals While much has been written about the science of biopharmaceuticals, there is a need for practical, up-to-date information on key issues at all stages of developing and manufacturing commercially viable biopharmaceutical drug products. This book helps fill the gap in the field, examining all areas of biopharmaceuticals manufacturing, from development and formulation to production and packaging. Written by a group of experts from industry and academia, the book focuses on real-world methods for maintaining product integrity throughout the commercialization process, clearly explaining the fundamentals and essential pathways for all development stages. Coverage includes: Research and early development phase appropriate approaches for ensuring product stability Development of commercially viable formulations for liquid and lyophilized dosage forms Optimal storage, packaging, and shipping methods Case studies relating to therapeutic monoclonal antibodies, recombinant proteins, and plasma fractions Useful analysis of successful and failed products Formulation and Process Development Strategies for Manufacturing Biopharma-ceuticals is an essential resource for scientists and engineers in the pharmaceutical and biotech industries, for government and regulatory agencies, and for anyone with an interest in the latest developments in the field.