Download Free Particle Technology And Engineering Book in PDF and EPUB Free Download. You can read online Particle Technology And Engineering and write the review.

Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods. - Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems - Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling - Enables engineers to build their knowledge and skills and to enhance their mechanistic understanding of particulate systems
Particle technology is a term used to refer to the science and technology related to the handling and processing of particles and powders. The production of particulate materials, with controlled properties tailored to subsequent processing and applications, is of major interest to a wide range of industries, including chemical and process, food, pharmaceuticals, minerals and metals companies and the handling of particles in gas and liquid solutions is a key technological step in chemical engineering. This textbook provides an excellent introduction to particle technology with worked examples and exercises. Based on feedback from students and practitioners worldwide, it has been newly edited and contains new chapters on slurry transport, colloids and fine particles, size enlargement and the health effects of fine powders. Topics covered include: Characterization (Size Analysis) Processing (Granulation, Fluidization) Particle Formation (Granulation, Size Reduction) Storage and Transport (Hopper Design, Pneumatic Conveying, Standpipes, Slurry Flow) Separation (Filtration, Settling, Cyclones) Safety (Fire and Explosion Hazards, Health Hazards) Engineering the Properties of Particulate Systems (Colloids, Respirable Drugs, Slurry Rheology) This book is essential reading for undergraduate students of chemical engineering on particle technology courses. It is also valuable supplementary reading for students in other branches of engineering, applied chemistry, physics, pharmaceutics, mineral processing and metallurgy. Practitioners in industries in which powders are handled and processed may find it a useful starting point for gaining an understanding of the behavior of particles and powders. Review of the First Edition taken from High Temperatures - High pressures 1999 31 243 – 251 "..This is a modern textbook that presents clear-cut knowledge. It can be successfully used both for teaching particle technology at universities and for individual study of engineering problems in powder processing."
Particle Technology and Applications presents the theoretical and technological background of particle science and explores up-to-date applications of particle technologies in the chemical, petrochemical, energy, mechanical, and materials industries. It looks at the importance of particle science and technology in the development of efficient chemi
Fundamentals of Particle Technology is designed to assist the understanding of how particulate materials behave during processing and is written with engineers and scientists, who are new to the subject, in mind. It is accessible, in both cost and style, and is illustrated with numerous line diagrams. Most of the 16 chapters end with questions in multiple choice format. This helps problem decomposition and the reader can see each step required to arrive at an overall process solution. If the reader makes a mistake with any of the steps he, or she, usually does not see their answer and will immediately know where they have gone wrong. The aspects of Particle Technology covered include: particle characterisation, solid/liquid and solid/gas separations, fluidisation, flow of (and in) dispersions, powder mixing, storage, hazards, crushing and colloidal interaction. Extensive Internet support and referencing is provided. The teaching style adopted is the result of experience gained from presenting the subject for over 30 years at both undergraduate and postgraduate level.
This book had its origins in a meeting between two (relatively) young particle technology researchers on Rehobeth Beach in Delaware in 1992 near the holiday house of Reg Davies (then Director of the Particle Science and Technology Research Center in Dupont). As we played in the sand, we shared an excitement for developments in particle technology, especially particle characterization, that would lead operations such as granulation to be placed on a sound scientific and engineering footing. The immediate outcome from this interaction was the development of new industry short courses in granulation and related topics which we taught together both in Australia and North America. This book follows closely the structure and approaches developed in these courses, particularly the emphasis on particle design in granulation, where the impact of both formulation properties and process variables on product attributes needs to be understood and quantified. The book has been a long time in the making. We have been actively preparing the book for at least five years. Although the chapters have relatively good bibliographies, this book is not a review of the field. Rather it is an attempt by the authors to present a comprehensive engineering approach to granulator design, scale up and operation. It is exciting for us to see the explosion of research interest around the world in this area in the last five to seven years. Some of the most recent work will have to find its way into the second edition.
Chemical Engineering Volume 2 covers the properties of particulate systems, including the character of individual particles and their behaviour in fluids. Sedimentation of particles, both singly and at high concentrations, flow in packed and fluidised beads and filtration are then examined. The latter part of the book deals with separation processes, such as distillation and gas absorption, which illustrate applications of the fundamental principles of mass transfer introduced in Chemical Engineering Volume 1. In conclusion, several techniques of growing importance - adsorption, ion exchange, chromatographic and membrane separations, and process intensification - are described. - A logical progression of chemical engineering concepts, volume 2 builds on fundamental principles contained in Chemical Engineering volume 1 and these volumes are fully cross-referenced - Reflects the growth in complexity and stature of chemical engineering over the last few years - Supported with further reading at the end of each chapter and graded problems at the end of the book
Coulson and Richardson's Chemical Engineering: Volume 2A: Particulate Systems and Particle Technology, Sixth Edition, has been fully revised and updated to provide practitioners with an overview of chemical engineering, including clear explanations of theory and thorough coverage of practical applications, all supported by case studies. A worldwide team of contributors has pooled their experience to revise old content and add new content. The content has been updated to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Fluid Flow, Heat Transfer and Mass Transfer has been developed from the series' volume 1, 6th edition. This volume covers the three main transport process of interest to chemical engineers: momentum transfer (fluid flow), heat transfer and mass transfer and the relationships between them. Particulate Systems and Particle Technology has been developed from the series' volume 2, 5th edition. This volume covers the properties of particulate systems, including the character of individual particles and their behavior in fluids. Sedimentation of particles, both singly and at high concentrations, flow in packed and fluidized beads and filtration are then examined. Separation Processes has been developed from the series' volume 2, 5th edition. This volume covers distillation and gas absorption, which illustrate applications of the fundamental principles of mass transfer. Several techniques—adsorption, ion exchange, chromatographic and membrane separations, and process intensification—are described. Chemical and Biochemical Reactors and Reaction Engineering has been developed from the series' volume 3, 3rd edition. - Features fully revised reference material converted from textbooks - Covers foundational to technical topics - Features emerging applications, numerical methods and computational tools
Particle breakage is an important process within a wide range of solids processing industries, including pharmaceuticals, food, agricultural and mining. Breakage of particles can be defined as intentional and unintentional, depending on whether it is desired or not. Through understanding of the science and underlying mechanisms behind this phenomenon, particle breakage can be either minimised or encouraged within an efficient and effective process. Particle Breakage examines particle breakage at three different length scales, ranging from single particle studies through groups of particles and looking at solid processing steps as a whole. This book is the widest ranging book in the field and includes the most up-to-date techniques such as Distinct Element Method (DEM), Monte Carlo simulations and Population Balance Equations (PBE). This handbook provides an overview of the current state-of-the- art and particle breakage. From the small scale of a single particle, to the study of whole processes for breakage; both by experimental study and mathematical modelling.* Covering a wide range of subjects and industrial applications* Allows the reader an understanding of the science behind engineered breakage processes* Giving an unrestrictive and interdisciplinary approach
Particle characterization is an important component in product research and development, manufacture, and quality control of particulate materials and an important tool in the frontier of sciences, such as in biotechnology and nanotechnology. This book systematically describes one major branch of modern particle characterization technology - the light scattering methods. This is the first monograph in particle science and technology covering the principles, instrumentation, data interpretation, applications, and latest experimental development in laser diffraction, optical particle counting, photon correlation spectroscopy, and electrophoretic light scattering. In addition, a summary of all major particle sizing and other characterization methods, basic statistics and sample preparation techniques used in particle characterization, as well as almost 500 latest references are provided. The book is a must for industrial users of light scattering techniques characterizing a variety of particulate systems and for undergraduate or graduate students who want to learn how to use light scattering to study particular materials, in chemical engineering, material sciences, physical chemistry and other related fields.
This book focuses on the practical aspects of particle size measurement: a major difference with existing books, which have a more theoretical approach. Of course, the emphasis still lies on the measurement techniques. For optimum application, their theoretical background is accompanied by quantitative quality aspects, limitations and problem identification. In addition the book covers the phenomena of sampling and dispersion of powders, either of which may be dominant in the overall analysis error. Moreover, there are chapters on the general aspects of quality for particle size analysis, quality management, reference materials and written standards, in- and on-line measurement, definitions and multilingual terminology, and on the statistics required for adequate interpretation of results. Importantly, a relation is made to product performance, both during processing as well as in final application. In view of its set-up, this book is well suited to support particle size measurement courses.