Download Free Particle Physics And Inflationary Cosmology Book in PDF and EPUB Free Download. You can read online Particle Physics And Inflationary Cosmology and write the review.

A monograph on inflationary cosmology and cosmological phase transitions, investigating modern cosmology's relationship to elementary particle physics. This work also includes a non-technical discussion of inflationary cosmology for those unfamiliar with the theory.
Some 25 years after the birth of inflationary cosmology, this volume sets out to provide both an authoritative and pedagogical introduction and review of the current state of the field. Readers learn about the arguments supporting the many different scenarios of cosmic inflation. Articles are written by eminent scientists, many of whom have made pioneering contributions to the field of inflationary cosmology.
A monograph on inflationary cosmology and cosmological phase transitions, investigating modern cosmology's relationship to elementary particle physics. This work also includes a non-technical discussion of inflationary cosmology for those unfamiliar with the theory.
From Nobel Prize–winning physicist P. J. E. Peebles, the story of cosmology from Einstein to today Modern cosmology began a century ago with Albert Einstein's general theory of relativity and his notion of a homogenous, philosophically satisfying cosmos. Cosmology's Century is the story of how generations of scientists built on these thoughts and many new measurements to arrive at a well-tested physical theory of the structure and evolution of our expanding universe. In this landmark book, one of the world's most esteemed theoretical cosmologists offers an unparalleled personal perspective on how the field developed. P. J. E. Peebles was at the forefront of many of the greatest discoveries of the past century, making fundamental contributions to our understanding of the presence of helium and microwave radiation from the hot big bang, the measures of the distribution and motion of ordinary matter, and the new kind of dark matter that allows us to make sense of these results. Taking readers from the field's beginnings, Peebles describes how scientists working in independent directions found themselves converging on a theory of cosmic evolution interesting enough to warrant the rigorous testing it passes so well. He explores the major advances—some inspired by remarkable insights or perhaps just lucky guesses—as well as the wrong turns taken and the roads not explored. He shares recollections from major players in this story and provides a rare, inside look at how science is really done. A monumental work, Cosmology's Century also emphasizes where the present theory is incomplete, suggesting exciting directions for continuing research.
A thorough and up-to-date graduate textbook on the most promising theory of the universe - inflationary cosmology.
This is the compelling, first-hand account of Alan Guth's paradigm-breaking discovery of the origins of the universe—and of his dramatic rise from young researcher to physics superstar. Guth's startling theory—widely regarded as one of the most important contributions to science during the twentieth century—states that the big bang was set into motion by a period of hyper-rapid “inflation,” lasting only a billion-trillion-billionth of a second. The Inflationary Universe is the passionate story of one leading scientist's effort to look behind the cosmic veil and explain how the universe began.
Cosmology and astroparticle physics have seen an avalanche of discoveries in the past decade (IceCube - high energy neutrinos, LIGO - gravitational waves, Fermi- gamma-ray telescope, Xenon-1T - dark matter detection, PLANCK- cosmic microwave radiation, EHT picture of black hole, SDSS -galaxy surveys), all of which require a multidisciplinary background for analyzing the phenomena. The arena for testing particle physics models is in the multimessenger astronomical observations and at the same time cosmology now requires a particle physics basis for explaining many phenomena. This book discusses the theoretical tools of particle physics and general relativity which are essential for understanding and correlating diverse astronomical observations.
Modern cosmology is a quickly developing ?eld of research. New technical devices and tools supply the community with new experimental data measured with high accuracy. The self-consistent explanation of these data needs t- oretical models that are based on hypothetical predictions of particle theory. In their turn, such predictions imply cosmology for their probe. Speci?c st- ies of the cosmological consequences of particle theory, linking them to their observable signatures, are actual. This boiling kettle of theoretical research and experimental efforts produces ideas that will be preserved for following generations. The aim of this book is to acquaint the reader with some of these ideas, - fering nontrivial ways to probe the physical basis of modern cosmology. An extensive review of the newest ideas in modern cosmology, e. g. , related with the development of the M-brane theory, lies beyond the scope of our book, which is aimed at providing a ?rmly established system of probes for these ideas, linking their predictions to their possible experimental test. We use the framework of in?ationary paradigm to reveal the phenomena that can shed light on the physical origin of the observed Universe, of its matter content and large-scale structure. The crucial role of quantum ?uctuations in creation of our Universe and in possible features, re?ecting cosmological impact of microphysics, is discussed. These features are shown to be accessible to - perimental test in the near future.
This book provides a comprehensive and instructive coverage of particle physics in the early universe, in a logical way. It starts from the thermal history of the universe by investigating some of the main arguments such as Big Bang nucleosynthesis, the cosmic microwave background (CMB) and the inflation, before treating in details the direct and indirect detection of dark matter and then some aspects of the physics of neutrino. Following, it describes possible candidates for dark matter and its interactions. The book is targeted at theoretical physicists who deal with particle physics in the universe, dark matter detection and astrophysical constraints, and at particle physicists who are interested in models of inflation or reheating. This book offers also material for astrophysicists who work with quantum field theory computations. All that is useful to compute any physical process is included: mathematical tables, all the needed functions for the thermodynamics of early universe and Feynman rules. In light of this, this book acts as a crossroad between astrophysics, particle physics and cosmology.
The past two decades have seen transformative advances in cosmology and string theory. Observations of the cosmic microwave background have revealed strong evidence for inflationary expansion in the very early universe, while new insights about compactifications of string theory have led to a deeper understanding of inflation in a framework that unifies quantum mechanics and general relativity. Written by two of the leading researchers in the field, this complete and accessible volume provides a modern treatment of inflationary cosmology and its connections to string theory and elementary particle theory. After an up-to-date experimental summary, the authors present the foundations of effective field theory, string theory, and string compactifications, setting the stage for a detailed examination of models of inflation in string theory. Three appendices contain background material in geometry and cosmological perturbation theory, making this a self-contained resource for graduate students and researchers in string theory, cosmology, and related fields.