Download Free Pancreatic Stem Cells Book in PDF and EPUB Free Download. You can read online Pancreatic Stem Cells and write the review.

The beta cells of the pancreatic islets of Langerhans are the only cells in the body that produce and secrete insulin. This metabolic hormone plays a central role in the maintenance of glucose homeostasis. This book provides a comprehensive review of the beta cell in health and disease. The book’s primary aim is to encourage investigators to become actively involved in diabetes research and the search for new approaches to prevent and treat diabetes.
Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.
This new series, based on a bi-annual conference and its topics, represents a major contribution to the emerging science of cancer research and regenerative medicine. Each volume brings together some of the most pre-eminent scientists working on cancer biology, cancer treatment, cancer diagnosis, cancer prevention and regenerative medicine to share information on currently ongoing work which will help shape future therapies. These volumes are invaluable resources not only for already active researchers or clinicians but also for those entering these fields, plus those in industry. Tissue Engineering and Regenerative Medicine is a proceedings volume which reflects papers presented at the 3rd bi-annual Innovations in Regenerative Medicine and Cancer Research conference; taken with its companion volume Stem Cells: Biology and Engineering it provides a complete overview of the papers from that meeting of international experts.
Progression of chronic diseases in general and chronic kidney disease in particular has been traditionally viewed in the light of various contributors to development of glomerulosclerosis and tubulointerstitial scarring culminating in renal fibrosis. Indeed, this dogma prevailed for decades underscoring experimental attempts to halt fibrotic processes. Breakthrough investigations of the past few years on stem/progenitor cell involvement in organ regeneration caused a conceptual shift in tackling the mechanisms of nephrosclerosis. It has become clear that the rate of progression of chronic kidney disease is the net sum of the opposing trends: degenerative fibrotic processes and regenerative repair mechanisms. The latter part of this equation has been by and large ignored for years and only recently attracted investigative attention. This book revisits the problem of kidney disease by focusing on regenerative mechanisms in renal repair and on the ways these regenerative processes can become subverted by an intrinsic disease process eventuating in its progression. Cutting-edge investigations are summarized by the most experienced international team of experts. - Presents a comprehensive, translational source for all aspects of renal stem cells, tissue regeneration, and stem cell therapies for renal diseases in one reference work. This will ultimately result in time savings for academic, medical and pharma researchers - Experts in the renal stem cell system in kidney repair and regeneration take readers from the bench research to new therapeutic approaches, providing a common language for nephrology researchers, fellows and other stem cell researchers. This enables the discussion of development of stem cells and their use in the repair and regeneration of the kidney
Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics. Provides a foundational overview of epigenetics in regenerative medicine Examines epigenetic components of tissue regeneration for a variety of organ systems and tissue types, as well as current attempts to employ these mechanisms in clinical practice Offers researchers, students, clinicians, and pharmacologists the tools they need to enhance tissue development, repair, homeostasis, and regeneration and explore new epigenetic therapeutic pathways Features chapter contributions from leading international researchers and clinicians in the fields of epigenetics and regenerative medicine
This book is a compilation of the bench experience of leading experts from various research labs involved in the cutting edge area of research. The authors describe the use of stem cells both as part of the combinatorial therapeutic intervention approach and as tools (disease model) during drug development, highlighting the shift from a conventional symptomatic treatment strategy to addressing the root cause of the disease process. The book is a continuum of the previously published book entitled "Stem Cells: from Drug to Drug Discovery" which was published in 2017.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Stem Cell Therapy for Diabetes, one of the latest installments of the Stem Cell Biology and Regenerative Medicine series, reviews the three main approaches for generation of sufficient numbers of insulin-producing cells for restoration of an adequate beta-cell mass: beta-cell expansion, stem-cell differentiation, and nuclear reprogramming. Adeptly collecting the research of the leading scientists in the field, Stem Cell Therapy for Diabetes compares the merits of employing autologous versus banked allogeneic cell sources for generation of surrogate beta cells, and addresses tissue engineering and ways for cell protection from recurring autoimmunity and graft rejection. Stem Cell Therapy for Diabetes provides essential reading for those especially interested in tracking the progress in applying of one of the most exciting new developments in bio-medicine towards a cure for diabetes.
The field of stem cell biology is expanding with a continued surge of new information related to its applications. Over past few years, stem cells have been extensively used in cell therapy, tissue engineering, in vitro drug testing among others. At the moment there is no single book available which comprehensively describes the significance of various application of stem cells derived from embryonic and adult sources from lab to clinics. In this edited volume, we discuss basics and advanced topics of stem cells to help researchers, students and professional find the most important information in a single source of updated information about stem cells and relevant applications. This book is divided in 12 chapters and covers topics such as in vitro cell culture, 3D cell culture, cell therapy, tissue engineering, cell factory, cell functionality, in vitro drug testing, organ development, autologous transplantation, allogeneic transplantation, adult stem cells, multipotent stem cells, induced pluripotent stem cells, a pluripotent and embryonic stem cells.