Download Free Oxygen Complexes And Oxygen Activation By Transition Metals Book in PDF and EPUB Free Download. You can read online Oxygen Complexes And Oxygen Activation By Transition Metals and write the review.

This monograph consists of manuscripts, summary statements, and poster abstracts submitted by invited speakers and poster contributors who participated in the symposium "Oxygen Complexes and Oxygen Activation by Transition Metals," held March 23-26, 1987, at Texas A&M University. This meeting was the fifth annual international symposium sponsored by the Texas A&M Industry-University Cooperative Chemistry Program (IUCCP). The co chairmen of the conference were Professors Arthur E. Martell and Donald T. Sawyer of the Texas A&M University Chemistry Department. The program was developed by an academic-industrial steering committee consisting of the co-chairmen and members appointed by the sponsoring chemical companies Dr. James F. Bradzil, The Standard Oil Company, Ohio; Dr. Jerry R. Ebner, Monsanto Company; Dr. Craig Murchison, Dow Chemical Company; Dr. Donald C. Olsen, Shell Development Company; Dr. Tim R. Ryan, Celanese Chemical Company; and Dr. Ron Sanderson, Texaco Chemical Company. The subject of this conference reflects the intense interest that has developed in academic institutions and industry on several aspects of dioxygen chemistry. These include the formation of dioxygen complexes and their applications in facilitated transport and oxygen separation; homo geneous and heterogeneous catalysis of oxidation; and oxygenation of organic substrates by molecular oxygen. The conference differs in two respects from several other symposia on dioxygen chemistry held during the past few years. First, there is extensive industrial participation, especially with respect to oxygen activation.
The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.
This monograph consists of the proceedings of the Fifth International Symposium on the Activation of Dioxygen and Homogeneous Catalytic Oxidation, held in College Station, Texas, March 14-19, 1993. It contains an introductory chapter authored by Professors D. H. R. Barton and D. T. Sawyer, and twenty-nine chapters describing presentations by the plenary lecturers and invited speakers. One of the invited speakers, who could not submit a manuscript for reasons beyond his control, is represented by an abstract of his lecture. Also included are abstracts of forty-seven posters contributed by participants in the symposium. Readers who may wish to know more about the subjects presented in abstract form are invited to communicate directly with the authors of the abstracts. This is the fifth international symposium that has been held on this subject. The first was hosted by the CNRS, May 21-29, 1979, in Bendor, France (on the Island of Bandol). The second meeting was organized as a NATO workshop in Padova, Italy, June 24-27, 1984. This was followed by a meeting in Tsukuba, Japan, July 12-16, 1987. The fourth symposium was held at Balatonfured, Hungary, September 10-14, 1990. The sixth meeting is scheduled to take place in Delft, The Netherlands (late Spring, 1996); the organizer and host will be Professor R. A. Sheldon.
Taking an interdisciplinary approach, this book and its counterpart, Active Oxygen in Biochemistry, explore the active research area of the chemistry and biochemistry of oxygen. Complementary but independent, the two volumes integrate subject areas including medicine, biology, chemistry, engineering, and environmental studies.
The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
hemistry is the science about breaking and forming of bonds between atoms. One of the most important processes for organic chemistry is breaking bonds C–H, as well as C–C in various compounds, and primarily, in hydrocarbons. Among hydrocarbons, saturated hydrocarbons, alkanes (methane, ethane, propane, hexane etc. ), are especially attractive as substrates for chemical transformations. This is because, on the one hand, alkanes are the main constituents of oil and natural gas, and consequently are the principal feedstocks for chemical industry. On the other hand, these substances are known to be the less reactive organic compounds. Saturated hydrocarbons may be called the “noble gases of organic chemistry” and, if so, the first representative of their family – methane – may be compared with extremely inert helium. As in all comparisons, this parallel between noble gases and alkanes is not fully accurate. Indeed the transformations of alkanes, including methane, have been known for a long time. These reactions involve the interaction with molecular oxygen from air (burning – the main source of energy!), as well as some mutual interconversions of saturated and unsaturated hydrocarbons. However, all these transformations occur at elevated temperatures (higher than 300–500 °C) and are usually characterized by a lack of selectivity. The conversion of alkanes into carbon dioxide and water during burning is an extremely valuable process – but not from a chemist viewpoint.
Aerobic organisms have evolved to utilise the intrinsic oxidising power of oxygen from the atmosphere. This so-called 'activation' of oxygen is often catalysed by a heme-containing enzyme. This book highlights the many and varied catalytic activities of O2-dependent heme–iron enzymes, including monoxygenases and cytochrome P450, dioxygenases, oxidases and model heme systems. Dioxygen-dependent Heme Enzymes will be a useful resource for postgraduate students and researchers in biochemistry and metallobiology working in, or moving into, research areas involving heme proteins.
The Enzymes, Volume 47, highlights new advances in the field, with this new volume presenting interesting chapters on The Multipurpose Family of Oxidases, Vanillyl alcohol oxidase, Choline oxidases, Aryl alcohol oxidase, D- and L-amino acid oxidases, Sugar oxidases, Phenolic Compounds hydroxylases, Baeyer-Villiger Monooxygenases, Flavin-dependent halogenases, Flavin-dependent dehalogenases, Styrene Monooxygenases, Bacterial luciferases, Cellobiose Dehydrogenases, Prenylated flavoenzymes, Ene-reductases, Flavoenzymes in Biocatalysis. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in The Enzymes series
hemistry is the science about breaking and forming of bonds between atoms. One of the most important processes for organic chemistry is breaking bonds C–H, as well as C–C in various compounds, and primarily, in hydrocarbons. Among hydrocarbons, saturated hydrocarbons, alkanes (methane, ethane, propane, hexane etc. ), are especially attractive as substrates for chemical transformations. This is because, on the one hand, alkanes are the main constituents of oil and natural gas, and consequently are the principal feedstocks for chemical industry. On the other hand, these substances are known to be the less reactive organic compounds. Saturated hydrocarbons may be called the “noble gases of organic chemistry” and, if so, the first representative of their family – methane – may be compared with extremely inert helium. As in all comparisons, this parallel between noble gases and alkanes is not fully accurate. Indeed the transformations of alkanes, including methane, have been known for a long time. These reactions involve the interaction with molecular oxygen from air (burning – the main source of energy!), as well as some mutual interconversions of saturated and unsaturated hydrocarbons. However, all these transformations occur at elevated temperatures (higher than 300–500 °C) and are usually characterized by a lack of selectivity. The conversion of alkanes into carbon dioxide and water during burning is an extremely valuable process – but not from a chemist viewpoint.
Oxidation reactions are an important chemical transformation in both academia and industry. Among the major advances in the field has been the development of catalytic processes, which are not only selective and efficient, but also allow the replacement of common stoichiometric oxidants with molecular oxygen, ideally from air at atmospheric pressure. This results in processes with higher atom efficiency, where water is the only side product in line with the principles of green chemistry. Focusing on the use of molecular oxygen as the terminal oxidant, this book covers recent advances in both heterogeneous and homogeneous systems, with and without metals and on the “taming” of the highly reactive oxygen gas by use of micro-flow reactors and membranes. A useful reference for industrial and academic chemists working on oxidation processes, as well as green chemists.