Download Free Oxygen And The Evolution Of Life Book in PDF and EPUB Free Download. You can read online Oxygen And The Evolution Of Life and write the review.

This book describes the interlaced histories of life and oxygen. It opens with the generation of oxygen in ancient stars and its distribution to newly formed planets like the Earth. Free O2 was not available on the early Earth, so the first life forms had to be anaerobic. Life introduced free O2 into the environment through the evolution of photosynthesis, which must have been a disaster for many anaerobes. Others found ways to deal with the toxic reactive oxygen species and even developed a much more efficient oxygen-based metabolism. The authors vividly describe how the introduction of O2 allowed the burst of evolution that created today’s biota. They also discuss the interplay of O2 and CO2, with consequences such as worldwide glaciations and global warming. On the physiological level, they present an overview of oxidative metabolism and O2 transport, and the importance of O2 in human life and medicine, emphasizing that while oxygen is essential, it is also related to aging and many disease states.
Oxygen offers fresh perspectives on our own lives and deaths, explaining modern killer diseases, why we age, and what we can do about it. Advancing revelatory new ideas, following chains of evidence, the book ranges through many disciplines, from environmental sciences to molecular medicine. Damage to DNA caused by oxidative stress appears to explain aging and many of its diseases, hence the popularity in alternative health circles of antioxidants. But antioxidants alone fail to prevent aging. Lane suggests two different avenues of study: modulation of the immune system, which generates free radicals as part of its defense against infectious diseases; and ways of improving the health of our cellular mitochondria, on which many age-related ailments seem to depend. Provocative and complexly argued. Copyright ©Kirkus Reviews, used with permission.
The remarkable scientific story of how Earth became an oxygenated planet The air we breathe is twenty-one percent oxygen, an amount higher than on any other known world. While we may take our air for granted, Earth was not always an oxygenated planet. How did it become this way? Donald Canfield—one of the world's leading authorities on geochemistry, earth history, and the early oceans—covers this vast history, emphasizing its relationship to the evolution of life and the evolving chemistry of the Earth. Canfield guides readers through the various lines of scientific evidence, considers some of the wrong turns and dead ends along the way, and highlights the scientists and researchers who have made key discoveries in the field. Showing how Earth’s atmosphere developed over time, Oxygen takes readers on a remarkable journey through the history of the oxygenation of our planet.
The history of life on Earth is, in some form or another, known to us all--or so we think. A New History of Life offers a provocative new account, based on the latest scientific research, of how life on our planet evolved--the first major new synthesis for general readers in two decades. Charles Darwin's theories, first published more than 150 years ago, form the backbone of how we understand the history of the Earth. In reality, the currently accepted history of life on Earth is so flawed, so out of date, that it's past time we need a 'New History of Life.' In their latest book, Joe Kirschvink and Peter Ward will show that many of our most cherished beliefs about the evolution of life are wrong. Gathering and analyzing years of discoveries and research not yet widely known to the public, A New History of Life proposes a different origin of species than the one Darwin proposed, one which includes eight-foot-long centipedes, a frozen “snowball Earth”, and the seeds for life originating on Mars. Drawing on their years of experience in paleontology, biology, chemistry, and astrobiology, experts Ward and Kirschvink paint a picture of the origins life on Earth that are at once too fabulous to imagine and too familiar to dismiss--and looking forward, A New History of Life brilliantly assembles insights from some of the latest scientific research to understand how life on Earth can and might evolve far into the future.
A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.
The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.
Winner of the 2010 Royal Society Prize for science books Powerful new research methods are providing fresh and vivid insights into the makeup of life. Comparing gene sequences, examining the atomic structure of proteins and looking into the geochemistry of rocks have all helped to explain creation and evolution in more detail than ever before. Nick Lane uses the full extent of this new knowledge to describe the ten greatest inventions of life, based on their historical impact, role in living organisms today and relevance to current controversies. DNA, sex, sight and consciousnesses are just four examples. Lane also explains how these findings have come about, and the extent to which they can be relied upon. The result is a gripping and lucid account of the ingenuity of nature, and a book which is essential reading for anyone who has ever questioned the science behind the glories of everyday life.
This Very Short Introduction is an exciting and non-traditional approach to understanding the terminology, properties, and classification of chemical elements. It traces the history and cultural impact of the elements on humankind from ancient times through today. Packed with anecdotes, The Elements is a highly engaging and entertaining exploration of the fundamental question: what is the world made from?
Knoll explores the deep history of life from its origins on a young planet to the incredible Cambrian explosion, with the very latest discoveries in paleontology integrated with emerging insights from molecular biology and earth system science. 100 illustrations.
This text is designed for students and anyone else with an interest in the history of life on our planet. The author describes the biological evolution of Earth’s organisms, and reconstructs their adaptations to the life they led, and the ecology and environment in which they functioned. On the grand scale, Earth is a constantly changing planet, continually presenting organisms with challenges. Changing geography, climate, atmosphere, oceanic and land environments set a stage in which organisms interact with their environments and one another, with evolutionary change an inevitable result. The organisms themselves in turn can change global environments: oxygen in our atmosphere is all produced by photosynthesis, for example. The interplay between a changing Earth and its evolving organisms is the underlying theme of the book. The book has a dedicated website which explores additional enriching information and discussion, and provides or points to the art for the book and many other images useful for teaching. See: www.wiley.com/go/cowen/historyoflife.