Download Free Oxidation Book in PDF and EPUB Free Download. You can read online Oxidation and write the review.

In this second edition, Edwin Frankel has updated and extended his now well-known book Lipid oxidation which has come to be regarded as the standard work on the subject since the publication of the first edition seven years previously. His main objective is to develop the background necessary for a better understanding of what factors should be considered, and what methods and lipid systems should be employed, to achieve suitable evaluation and control of lipid oxidation in complex foods and biological systems. The oxidation of unsaturated fatty acids is one of the most fundamental reactions in lipid chemistry. When unsaturated lipids are exposed to air, the complex, volatile oxidation compounds that are formed cause rancidity. This decreases the quality of foods that contain natural lipid components as well as foods in which oils are used as ingredients. Furthermore, products of lipid oxidation have been implicated in many vital biological reactions, and evidence has accumulated to show that free radicals and reactive oxygen species participate in tissue injuries and in degenerative disease. Although there have been many significant advances in this challenging field, many important problems remain unsolved. This second edition of Lipid oxidation follows the example of the first edition in offering a summary of the many unsolved problems that need further research. The need to understand lipid oxidation is greater than ever with the increased interest in long-chain polyunsaturated fatty acids, the reformulation of oils to avoid hydrogenation and trans fatty acids, and the enormous attention given to natural phenolic antioxidants, including flavonoids and other phytochemicals.
This text for graduate and post graduate students covers fundamentals of high temperature corrosion and related topics. Early chapters cover the thermodynamics and kinetics of oxidation and defect structure of oxides and diffusion in oxides, and later chapters cover thin and thick layer oxidation, o
The book is concerned with understanding the fundamental mechanisms of high temperature alloy oxidation. It uses this understanding to develop methods of predicting oxidation rates and the way they change with temperature, gas chemistry and alloy composition. The focus is on designing (or selecting) alloy compositions which provide optimal resistance to attack by corrosive gases. . Emphasises quantitative calculations for predicting reaction rates and the effects of temperature, oxidant activities and alloy compositions. . Uses phase diagrams and diffusion paths to analyse and interpret scale structures and internal precipitation distributions . Provides a detailed examination of corrosion in industrial gases (water vapour effects, carburisation and metal dusting, sulphidation) . Text is well supported by numerous micrographs, phase diagrams and tabulations of relevant thermodynamic and kinetic data . Combines physical chemistry and materials science methodologies.
The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
At the very latest, with the award of the 2001 Nobel Prize for work on asymmetric oxidation, there has been a need for a comprehensive book on such methods. Edited by J.-E. Backvall, one of the world's leaders in the field, this book fills that gap by covering the topic, from classical to green chemistry methods. He has put together a plethora of well-established authors from all over the world who cover every important aspect in high-quality contributions -- whether aerobic oxidation or transition metal-catalyzed epoxidation of alkenes. By providing an overview of this huge topic, this book represents an unparalleled aid for any chemist working in the field. Chapters include: Recent Developments in the Osmium-Catalyzed Dihydroxylation of Olefins Transition Metal-Catalyzed Epoxidation of Alkenes Organocatalytic Oxidation - Ketone-Catalyzed Asymmetric Epoxidation of Olefins Modern Oxidation of Alcohols using environmentally Benign Oxidants Aerobic Oxidations and Related Reactions Catalyzed by N-Hydroxyphthalimide Ruthenium-Catalyzed Oxidation of Alkenes, Alcohols, Amines, Amides, b-Lactams, Phenols, and Hydrocarbons Selective Oxidations of Sulfides and Amines Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates Oxidation of Carbonyl Compounds Mn-catalysed Oxidation with Hydrogen Peroxide
During the translation, the author had the opportunity to re view several chapters, taking into consideration the more recent literature. As far as possible all new theoretical concepts and experi mental data published before 1963 have been quoted and discussed under the theoretical viewpoint of this book. A new chapter "Passivity and Inhibition During High-Tempera ture Oxidation" was introduced. Section 4.8 was enlarged by a dis cussion of the transition from internal to external oxidation. The author very much appreciates the cooperation of the trans lator and of Plenum Press. Gottingen, April 1.965 Karl Hauffe v Preface The number of publications concerned with oxidation and cor rosion processes has become so copious that many engineers and scientists find it practically impossible to obtain an overall view of the growing body of knowledge and to bring order to the confusing multiplicity of experimental data. As a result the need for a compre hensive survey of the present state of research in this field has be come more and more urgent.
Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada
The correlation of spectroscopic and chemical investigations in recent years has been highly beneficial of many reasons. Around 1950, no valid explanation was available of the colours of compounds of the five tran sition groups. Later, it was possible to identify the excited levels with those expected for an electron configuration with adefinite number of electrons in the partly filled shell. I t is not generally recognized that this is equivalent to determining spectroscopic oxidation states related to the preponderant electron configuration and not to estimates of the fractional atomic charges. This brings in an entirely different type of description than the formal oxidation numbers used for characterizing compounds and reaction schemes. However, it must be realized that collectively oxidized ligands, formation of cluster-complexes and catenation may prevent the oxidation state from being well-defined. The writer would like to express his gratitude to many, but first of all to DR. CLAUS SCHÄFFER, University of Copenhagen, who is the most efficient group-theoretical engineer known to the writer; his comments and discussions have been highly valuable. The writer's colleague, Pro fessor FAUSTO CALDERAZZO (now going to the University of Pisa) has been most helpful in metallo-organic questions. Thanks are also due to Professors E. RANcKE-MADsEN and K. A. JENSEN for correspondence and conversations about formal oxidation numbers.
Oxidative rancidity is a major cause of food quality deterioration, leading to the formation of undesirable off-flavours as well as unhealthy compounds. Antioxidants are widely employed to inhibit oxidation, and with current consumer concerns about synthetic additives and natural antioxidants are of much interest. The two volumes of Oxidation in foods and beverages and antioxidant applications review food quality deterioration due to oxidation and methods for its control. The second volume reviews problems associated with oxidation and its management in different industry sectors. Part one focuses on animal products, with chapters on the oxidation and protection of red meat, poultry, fish and dairy products. The oxidation of fish oils and foods enriched with omega-3 polyunsaturated fatty acids is also covered. Part two reviews oxidation in plant-based foods and beverages, including edible oils, fruit and vegetables, beer and wine. Oxidation of fried products and emulsion-based foods is also discussed. Final chapters examine encapsulation to inhibit lipid oxidation and antioxidant active packaging and edible films. With its distinguished international team of editors and contributors, the two volumes of Oxidation in foods and beverages and antioxidant applications is standard references for R&D and QA professionals in the food industry, as well as academic researchers interested in food quality.
Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology is a complete resource covering the fundamentals and applications of all Advanced Oxidation Processes (AOPs). This book presents the most up-to-date research on AOPs and makes the argument that AOPs offer an eco-friendly method of wastewater treatment. In addition to an overview of the fundamentals and applications, it details the reactive species involved, along with sections on reactor designs, thus helping readers understand and implement these methods. - Presents in-depth coverage of all types of Advanced Oxidation Processes, including Super Critical Water Oxidation, Photo-Fenton and Like Processes - Includes a fundamental review, applications, reactive species and reactor designs - Reviews applications across waste types, including industrial waste, domestic and municipal sewage, and hospital wastes