Download Free Outlines And Highlights For Primer Of Ecology By Nicholas J Gotelli Isbn Book in PDF and EPUB Free Download. You can read online Outlines And Highlights For Primer Of Ecology By Nicholas J Gotelli Isbn and write the review.

A detailed exposition of the most common mathematical models in population and community ecology, covering exponential and logistic population growth, age-structured demography, metapopulation dynamics, competition, predation, and island biogeography. Intended to demystify ecological models and the math behind them by deriving the models from first principles. The primer may be used as a self-teaching tutorial, as a primary textbook, or as a supplemental text to a general ecology textbook. Annotation copyright by Book News, Inc., Portland, OR
Community ecology has undergone a transformation in recent years, from a discipline largely focused on processes occurring within a local area to a discipline encompassing a much richer domain of study, including the linkages between communities separated in space (metacommunity dynamics), niche and neutral theory, the interplay between ecology and evolution (eco-evolutionary dynamics), and the influence of historical and regional processes in shaping patterns of biodiversity. To fully understand these new developments, however, students continue to need a strong foundation in the study of species interactions and how these interactions are assembled into food webs and other ecological networks. This new edition fulfils the book's original aims, both as a much-needed up-to-date and accessible introduction to modern community ecology, and in identifying the important questions that are yet to be answered. This research-driven textbook introduces state-of-the-art community ecology to a new generation of students, adopting reasoned and balanced perspectives on as-yet-unresolved issues. Community Ecology is suitable for advanced undergraduates, graduate students, and researchers seeking a broad, up-to-date coverage of ecological concepts at the community level.
Community ecology is the study of the interactions between populations of co-existing species. Co-edited by two prominent community ecologists and featuring contributions from top researchers in the field, this book provides a survey of the state-of-the-art in both the theory and applications of the discipline. It pays special attention to topology, dynamics, and the importance of spatial and temporal scale while also looking at applications to emerging problems in human-dominated ecosystems (including the restoration and reconstruction of viable communities). Community Ecology: Processes, Models, and Applications adopts a mainly theoretical approach and focuses on the use of network-based theory, which remains little explored in standard community ecology textbooks. The book includes discussion of the effects of biotic invasions on natural communities; the linking of ecological network structure to empirically measured community properties and dynamics; the effects of evolution on community patterns and processes; and the integration of fundamental interactions into ecological networks. A final chapter indicates future research directions for the discipline.
This book is the first user-friendly regional guide devoted to ants—the “little things that run the world.” Lavishly illustrated with more than 500 line drawings, 300-plus photographs, and regional distribution maps as composite illustrations for every species, this guide will introduce amateur and professional naturalists and biologists, teachers and students, and environmental managers and pest-control professionals to more than 140 ant species found in the northeastern United States and eastern Canada. The detailed drawings and species descriptions, together with the high-magnification photographs, will allow anyone to identify and learn about ants and their diversity, ecology, life histories, and beauty. In addition, the book includes sections on collecting ants, ant ecology and evolution, natural history, and patterns of geographic distribution and diversity to help readers gain a greater understanding and appreciation of ants.
This book is a printed edition of the Special Issue Causes and Consequences of Species Diversity in Forest Ecosystems that was published in Forests
The exercises in this unique book allow students to use spreadsheet programs such as Microsoftr Excel to create working population models. The book contains basic spreadsheet exercises that explicate the concepts of statistical distributions, hypothesis testing and power, sampling techniques, and Leslie matrices. It contains exercises for modeling such crucial factors as population growth, life histories, reproductive success, demographic stochasticity, Hardy-Weinberg equilibrium, metapopulation dynamics, predator-prey interactions (Lotka-Volterra models), and many others. Building models using these exercises gives students "hands-on" information about what parameters are important in each model, how different parameters relate to each other, and how changing the parameters affects outcomes. The "mystery" of the mathematics dissolves as the spreadsheets produce tangible graphic results. Each exercise grew from hands-on use in the authors' classrooms. Each begins with a list of objectives, background information that includes standard mathematical formulae, and annotated step-by-step instructions for using this information to create a working model. Students then examine how changing the parameters affects model outcomes and, through a set of guided questions, are challenged to develop their models further. In the process, they become proficient with many of the functions available on spreadsheet programs and learn to write and use complex but useful macros. Spreadsheet Exercises in Ecology and Evolution can be used independently as the basis of a course in quantitative ecology and its applications or as an invaluable supplement to undergraduate textbooks in ecology, population biology, evolution, and population genetics.
Conservation Biology for All provides cutting-edge but basic conservation science to a global readership. A series of authoritative chapters have been written by the top names in conservation biology with the principal aim of disseminating cutting-edge conservation knowledge as widely as possible. Important topics such as balancing conversion and human needs, climate change, conservation planning, designing and analyzing conservation research, ecosystem services, endangered species management, extinctions, fire, habitat loss, and invasive species are covered. Numerous textboxes describing additional relevant material or case studies are also included. The global biodiversity crisis is now unstoppable; what can be saved in the developing world will require an educated constituency in both the developing and developed world. Habitat loss is particularly acute in developing countries, which is of special concern because it tends to be these locations where the greatest species diversity and richest centres of endemism are to be found. Sadly, developing world conservation scientists have found it difficult to access an authoritative textbook, which is particularly ironic since it is these countries where the potential benefits of knowledge application are greatest. There is now an urgent need to educate the next generation of scientists in developing countries, so that they are in a better position to protect their natural resources.
A guide to seashells found in Texas that discusses the historical uses of mollusks and seashells, the history of conchology and malacology in the state, habitats, and other related topics, and provides information for identifying nine hundred species.
Descriptions of summer research programs: The AIM REU: Individual projects with a common theme by D. W. Farmer The Applied Mathematical Sciences Summer Institute by E. T. Camacho and S. A. Wirkus Promoting research and minority participantion via undergraduate research in the mathematical sciences. MTBI/SUMS-Arizona State University by C. Castillo-Chavez, C. Castillo-Garsow, G. Chowell, D. Murillo, and M. Pshaenich Summer mathematics research experience for undergraduates (REU) at Brigham Young University by M. Dorff Introducing undergraduates for underrepresented minorities to mathematical research: The CSU Channel Islands/California Lutheran University REU, 2004-2006 by C. Wyels The REUT and NREUP programs at California State University, Chico by C. M. Gallagher and T. W. Mattman Undergraduate research at Canisius. Geometry and physics on graphs, summer 2006 by S. Prassidis The NSF REU at Central Michigan University by S. Narayan and K. Smith Claremont Colleges REU, 2005-07 by J. Hoste The first summer undergraduate research program at Clayton State University by A. Lanz Clemson REU in computational number theory and combinatorics by N. Calkin and K. James Research with pre-mathematicians by C. R. Johnson Traditional roots, new beginnings: Transitions in undergraduate research in mathematics at ETSU by A. P. Godbole Undergraduate research in mathematics at Grand Valley State University by S. Schlicker The Hope College REU program by T. Pennings The REU experience at Iowa State University by L. Hogben Lafayette College's REU by G. Gordon LSU REU: Graphs, knots, & Dessins in topology, number theory & geometry by N. W. Stoltzfus, R. V. Perlis, and J. W. Hoffman Mount Holyoke College mathematics summer research institute by M. M. Robinson The director's summer program at the NSA by T. White REU in mathematical biology at Penn State Erie, The Behrend College by J. P. Previte, M. A. Rutter, and S. A. Stevens The Rice University Summer Institute of Statistics (RUSIS) by J. Rojo The Rose-Hulman REU in mathematics by K. Bryan The REU program at DIMACS/Rutgers University by B. J. Latka and F. S. Roberts The SUNY Potsdam-Clarkson University REU program by J. Foisy The Trinity University research experiences for undergraduates in mathematics program by S. Chapman Undergraduate research in mathematics at the University of Akron by J. D. Adler The Duluth undergraduate research program 1977-2006 by J. A. Gallian Promoting undergraduate research in mathematics at the University of Nebraska-Lincoln by J. L. Walker, W. Ledder, R. Rebarber, and G. Woodward REU site: Algorithmic combinatorics on words by F. Blanchet-Sadri Promoting undergraduate research by T. Aktosun Research experiences for undergraduates inverse problems for electrical networks by J. A. Morrow Valparaiso experiences in research for undergraduates in mathematics by R. Gillman and Z. Szaniszlo Wabash Summer Institute in Algebra (WSIA) by M. Axtell, J. D. Phillips, and W. Turner THe SMALL program at Williams College by C. E. Silva and F. Morgan Industrial mathematics and statistics research for undergraduates at WPI by A. C. Heinricher and S. L. Weekes Descriptions of summer enrichment programs: Twelve years of summer program for women in mathematics-What works and why? by M. M. Gupta Research experience for undergraduates in numerical analysis and scientific computing: An international program by G. Fairweather and B. M. Moskal Articles: The Long-Term Undergraduate Research (LURE) model by S. S. Adams, J. A. Davis, N. Eugene, K. Hoke, S. Narayan, and K. Smith Research with students from underrepresented groups by R. Ashley, A. Ayela-Uwangue, F. Cabrera, C. Callesano, and D. A. Narayan Research classes at Gettysburg College by B. Bajnok Research in industrial projects for students: A unique undergraduate experience by S. Beggs What students say about their REU experience by F. Connolly and J. A. Gallian Diversity issues in undergraduate research by R. Cortez, D. Davenport, H
Remote photography and infrared sensors are widely used in the sampling of wildlife populations worldwide, especially for cryptic or elusive species. Guiding the practitioner through the entire process of using camera traps, this book is the first to compile state-of-the-art sampling techniques for the purpose of conducting high-quality science or effective management. Chapters on the evaluation of equipment, field sampling designs, and data analysis methods provide a coherent framework for making inferences about the abundance, species richness, and occupancy of sampled animals. The volume introduces new models that will revolutionize use of camera data to estimate population density, such as the newly developed spatial capture–recapture models. It also includes richly detailed case studies of camera trap work on some of the world’s most charismatic, elusive, and endangered wildlife species. Indispensible to wildlife conservationists, ecologists, biologists, and conservation agencies around the world, the text provides a thorough review of the subject as well as a forecast for the use of remote photography in natural resource conservation over the next few decades.