Download Free Oscillations And Resonances Book in PDF and EPUB Free Download. You can read online Oscillations And Resonances and write the review.

This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators
Version 6.0. An introductory course on differential equations aimed at engineers. The book covers first order ODEs, higher order linear ODEs, systems of ODEs, Fourier series and PDEs, eigenvalue problems, the Laplace transform, and power series methods. It has a detailed appendix on linear algebra. The book was developed and used to teach Math 286/285 at the University of Illinois at Urbana-Champaign, and in the decade since, it has been used in many classrooms, ranging from small community colleges to large public research universities. See https: //www.jirka.org/diffyqs/ for more information, updates, errata, and a list of classroom adoptions.
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
A concise book that conveys the essential physics concepts required to pass the FRCA viva examinations, with relevant applied questions.
The book introduces possibly the most compact, simple and physically understandable tool that can describe, explain, predict and design the widest set of phenomena in time-variant and nonlinear oscillations. The phenomena described include parametric resonances, combined resonances, instability of forced oscillations, synchronization, distributed parameter oscillation and flatter, parametric oscillation control, robustness of oscillations and many others. Although the realm of nonlinear oscillations is enormous, the book relies on the concept of minimum knowledge for maximum understanding. This unique tool is the method of stationarization, or one frequency approximation of parametric resonance problem analysis in linear time-variant dynamic systems. The book shows how this can explain periodic motion stability in stationary nonlinear dynamic systems, and reveals the link between the harmonic stationarization coefficients and describing functions. As such, the book speaks the language of control: transfer functions, frequency response, Nyquist plot, stability margins, etc. An understanding of the physics of stability loss is the basis for the design of new oscillation control methods for, several of which are presented in the book. These and all the other findings are illustrated by numerical examples, which can be easily reproduced by readers equipped with a basic simulation package like MATLAB with Simulink. The book offers a simple tool for all those travelling through the world of oscillations, helping them discover its hidden beauty. Researchers can use the method to uncover unknown aspects, and as a reference to compare it with other, for example, abstract mathematical means. Further, it provides engineers with a minimalistic but powerful instrument based on physically measurable variables to analyze and design oscillatory systems.
Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.
Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.
Dealing with vibrations and waves, this text aims to provide understanding of the basic principles and methods of analysing various physical phenomena. The content includes the general properties of propagation, a detailed study of mechanical (elastic and acoustic) and electromagnetic waves, propagation, attenuation, dispersion, reflection, interference and diffraction of waves. It features chapters on the effect of motion of sources and observers (both classical and relativistic), emission of electromagnetic waves, standing and guided waves and a final chapter on de Broglie waves constitutes an introduction to quantum mechanics.
One of the most important features of nonlinear systems with several degrees of freedom is the presence of internal resonances at certain relations between natural frequencies of different modes. This monograph is the first book devoted predominantly to internal resonances in different mechanical systems including those of practical importance.The main purpose is to consider the internal resonances from the general point of view and to elucidate their role in applied nonlinear dynamics by using an efficient approach based on introducing the complex representation of equations of motion (together with the multiple scale method). Considered here are autonomous and nonautonomous discrete two-degree-of-freedom systems, infinite chains of particles, and continuous systems, including circular rings and cylindrical shells. Specific attention is paid to the case of one-to-one internal resonance in systems with cubic nonlinearities. Steady-state and nonstationary regimes of motion, interaction of the internal and external resonances at forced oscillations, and bifurcations of steady-state modes and their stability are systematically studied./a