Download Free Orthogonal Polynomials Book in PDF and EPUB Free Download. You can read online Orthogonal Polynomials and write the review.

The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.
"This concise introduction covers general elementary theory related to orthogonal polynomials and assumes only a first undergraduate course in real analysis. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some specific systems of orthogonal polynomials. 1978 edition"--
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
The book offers an accessible reference for researchers in the probability, statistics and special functions communities. It gives a variety of interdisciplinary relations between the two main ingredients of stochastic processes and orthogonal polynomials. It covers topics like time dependent and asymptotic analysis for birth-death processes and diffusions, martingale relations for Lévy processes, stochastic integrals and Stein's approximation method. Almost all well-known orthogonal polynomials, which are brought together in the so-called Askey Scheme, come into play. This volume clearly illustrates the powerful mathematical role of orthogonal polynomials in the analysis of stochastic processes and is made accessible for all mathematicians with a basic background in probability theory and mathematical analysis. Wim Schoutens is a Postdoctoral Researcher of the Fund for Scientific Research-Flanders (Belgium). He received his PhD in Science from the Catholic University of Leuven, Belgium.
This volume expands on a set of lectures held at the Courant Institute on Riemann-Hilbert problems, orthogonal polynomials, and random matrix theory. The goal of the course was to prove universality for a variety of statistical quantities arising in the theory of random matrix models. The central question was the following: Why do very general ensembles of random n times n matrices exhibit universal behavior as n > infinity? The main ingredient in the proof is the steepest descent method for oscillatory Riemann-Hilbert problems. Titles in this series are copublished with the Courant Institute of Mathematical Sciences at New York University.
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. Thenbsp;volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring onlynbsp;a basic knowledge of analysis and algebra, and each includes many exercises.
This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.