Download Free Ordered Random Variables Theory And Applications Book in PDF and EPUB Free Download. You can read online Ordered Random Variables Theory And Applications and write the review.

Ordered Random Variables have attracted several authors. The basic building block of Ordered Random Variables is Order Statistics which has several applications in extreme value theory and ordered estimation. The general model for ordered random variables, known as Generalized Order Statistics has been introduced relatively recently by Kamps (1995).
This volume provides an up-to-date coverage of the theory and applications of ordered random variables and their functions. Furthermore, it develops the distribution theory of OS systematically. Applications include procedures for the treatment of outliers and other data analysis techniques. Even when chapter and section headings are the same as in OSII, there are appreciable changes, mostly additions, with some obvious deletions. Parts of old Ch. 7, for example, are prime candidates for omission. Appendices are designed to help collate tables, computer algorithms, and software, as well as to compile related monographs on the subject matter. Extensive exercise sets will continue, many of them replaced by newer ones.
Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.
The purpose of this book is to honor the fundamental contributions to many different areas of statistics made by Barry Arnold. Distinguished and active researchers highlight some of the recent developments in statistical distribution theory, order statistics and their properties, as well as inferential methods associated with them. Applications to survival analysis, reliability, quality control, and environmental problems are emphasized.
This updated classic text will aid readers in understanding much of the current literature on order statistics: a flourishing field of study that is essential for any practising statistician and a vital part of the training for students in statistics. Written in a simple style that requires no advanced mathematical or statistical background, the book introduces the general theory of order statistics and their applications. The book covers topics such as distribution theory for order statistics from continuous and discrete populations, moment relations, bounds and approximations, order statistics in statistical inference and characterisation results, and basic asymptotic theory. There is also a short introduction to record values and related statistics. The authors have updated the text with suggestions for further reading that may be used for self-study. Written for advanced undergraduate and graduate students in statistics and mathematics, practising statisticians, engineers, climatologists, economists, and biologists.
1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generation algorithm and number of equivalence classes / H. Joe, R.M. Cooke and D. Kurowicka -- 11. Optimal truncation of vines / D. Kurowicka -- 12. Bayesian inference for D-vines : Estimation and model selection / C. Czado and A. Min -- 13. Analysis of Australian electricity loads using joint Bayesian inference of D-vines with autoregressive margins / C. Czado, F. Gartner and A. Min -- 14. Non-parametric Bayesian belief nets versus vines / A. Hanea -- 15. Modeling dependence between financial returns using pair-copula constructions / K. Aas and D. Berg -- 16. Dynamic D-vine model / A. Heinen and A. Valdesogo -- 17. Summary and future directions / D. Kurowicka
An Introduction to Stochastic Orders discusses this powerful tool that can be used in comparing probabilistic models in different areas such as reliability, survival analysis, risks, finance, and economics. The book provides a general background on this topic for students and researchers who want to use it as a tool for their research. In addition, users will find detailed proofs of the main results and applications to several probabilistic models of interest in several fields, and discussions of fundamental properties of several stochastic orders, in the univariate and multivariate cases, along with applications to probabilistic models. - Introduces stochastic orders and its notation - Discusses different orders of univariate stochastic orders - Explains multivariate stochastic orders and their convex, likelihood ratio, and dispersive orders
Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications is a comprehensive undergraduate-level textbook. With its excellent topical coverage, the focus of this book is on the basic principles and practical applications of the fundamental concepts that are extensively used in various Engineering disciplines as well as in a variety of programs in Life and Social Sciences. The text provides students with the requisite building blocks of knowledge they require to understand and progress in their areas of interest. With a simple, clear-cut style of writing, the intuitive explanations, insightful examples, and practical applications are the hallmarks of this book. The text consists of twelve chapters divided into four parts. Part-I, Probability (Chapters 1 – 3), lays a solid groundwork for probability theory, and introduces applications in counting, gambling, reliability, and security. Part-II, Random Variables (Chapters 4 – 7), discusses in detail multiple random variables, along with a multitude of frequently-encountered probability distributions. Part-III, Statistics (Chapters 8 – 10), highlights estimation and hypothesis testing. Part-IV, Random Processes (Chapters 11 – 12), delves into the characterization and processing of random processes. Other notable features include: Most of the text assumes no knowledge of subject matter past first year calculus and linear algebra With its independent chapter structure and rich choice of topics, a variety of syllabi for different courses at the junior, senior, and graduate levels can be supported A supplemental website includes solutions to about 250 practice problems, lecture slides, and figures and tables from the text Given its engaging tone, grounded approach, methodically-paced flow, thorough coverage, and flexible structure, Probability, Random Variables, Statistics, and Random Processes: Fundamentals & Applications clearly serves as a must textbook for courses not only in Electrical Engineering, but also in Computer Engineering, Software Engineering, and Computer Science.
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
The essential lifesaver for students who want to master probability For students learning probability, its numerous applications, techniques, and methods can seem intimidating and overwhelming. That's where The Probability Lifesaver steps in. Designed to serve as a complete stand-alone introduction to the subject or as a supplement for a course, this accessible and user-friendly study guide helps students comfortably navigate probability's terrain and achieve positive results. The Probability Lifesaver is based on a successful course that Steven Miller has taught at Brown University, Mount Holyoke College, and Williams College. With a relaxed and informal style, Miller presents the math with thorough reviews of prerequisite materials, worked-out problems of varying difficulty, and proofs. He explores a topic first to build intuition, and only after that does he dive into technical details. Coverage of topics is comprehensive, and materials are repeated for reinforcement—both in the guide and on the book's website. An appendix goes over proof techniques, and video lectures of the course are available online. Students using this book should have some familiarity with algebra and precalculus. The Probability Lifesaver not only enables students to survive probability but also to achieve mastery of the subject for use in future courses. A helpful introduction to probability or a perfect supplement for a course Numerous worked-out examples Lectures based on the chapters are available free online Intuition of problems emphasized first, then technical proofs given Appendixes review proof techniques Relaxed, conversational approach