Download Free Orchestrating A Resource Aware Edge Book in PDF and EPUB Free Download. You can read online Orchestrating A Resource Aware Edge and write the review.

More and more services are moving to the cloud, attracted by the promise of unlimited resources that are accessible anytime, and are managed by someone else. However, hosting every type of service in large cloud datacenters is not possible or suitable, as some emerging applications have stringent latency or privacy requirements, while also handling huge amounts of data. Therefore, in recent years, a new paradigm has been proposed to address the needs of these applications: the edge computing paradigm. Resources provided at the edge (e.g., for computation and communication) are constrained, hence resource management is of crucial importance. The incoming load to the edge infrastructure varies both in time and space. Managing the edge infrastructure so that the appropriate resources are available at the required time and location is called orchestrating. This is especially challenging in case of sudden load spikes and when the orchestration impact itself has to be limited. This thesis enables edge computing orchestration with increased resource-awareness by contributing with methods, techniques, and concepts for edge resource management. First, it proposes methods to better understand the edge resource demand. Second, it provides solutions on the supply side for orchestrating edge resources with different characteristics in order to serve edge applications with satisfactory quality of service. Finally, the thesis includes a critical perspective on the paradigm, by considering sustainability challenges. To understand the demand patterns, the thesis presents a methodology for categorizing the large variety of use cases that are proposed in the literature as potential applications for edge computing. The thesis also proposes methods for characterizing and modeling applications, as well as for gathering traces from real applications and analyzing them. These different approaches are applied to a prototype from a typical edge application domain: Mixed Reality. The important insight here is that application descriptions or models that are not based on a real application may not be giving an accurate picture of the load. This can drive incorrect decisions about what should be done on the supply side and thus waste resources. Regarding resource supply, the thesis proposes two orchestration frameworks for managing edge resources and successfully dealing with load spikes while avoiding over-provisioning. The first one utilizes mobile edge devices while the second leverages the concept of spare devices. Then, focusing on the request placement part of orchestration, the thesis formalizes it in the case of applications structured as chains of functions (so-called microservices) as an instance of the Traveling Purchaser Problem and solves it using Integer Linear Programming. Two different energy metrics influencing request placement decisions are proposed and evaluated. Finally, the thesis explores further resource awareness. Sustainability challenges that should be highlighted more within edge computing are collected. Among those related to resource use, the strategy of sufficiency is promoted as a way forward. It involves aiming at only using the needed resources (no more, no less) with a goal of reducing resource usage. Different tools to adopt it are proposed and their use demonstrated through a case study.
The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about theInternet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates.
This book constitutes the refereed proceedings of the 7th Annual SmartCity360° Summit which was organized in November 2021 in Porto, Portugal. Due to COVID-19 pandemic the conference was held virtually. The volume combines selected papers of 6 conferences, namely EdgeIoT 2021 - International Conference on Intelligent Edge Processing in the IoT Era; IC4S 2021 - International Conference on Cognitive Computing and Cyber Physical Systems; SmartGov 2021 - International Conference on Smart Governance for Sustainable Smart Cities; SmartGift 2021 - International Conference on Smart Grid and Innovative Frontiers in Telecommunications; e PFSM 2021 - International Conference on Privacy and Forensics in Smart Mobility. The 45 full papers were carefully selected from 109 submissions. The papers are organized in four thematic sections on Smart Grid and Innovative Frontiers in Telecommunications; Smart Governance for Sustainable Smart Cities; Privacy and Forensics in Smart Mobility; and Sensor Systems and Software.
This four-volume set LNCS 13701-13704 constitutes contributions of the associated events held at the 11th International Symposium on Leveraging Applications of Formal Methods, ISoLA 2022, which took place in Rhodes, Greece, in October/November 2022. The contributions in the four-volume set are organized according to the following topical sections: specify this - bridging gaps between program specification paradigms; x-by-construction meets runtime verification; verification and validation of concurrent and distributed heterogeneous systems; programming - what is next: the role of documentation; automated software re-engineering; DIME day; rigorous engineering of collective adaptive systems; formal methods meet machine learning; digital twin engineering; digital thread in smart manufacturing; formal methods for distributed computing in future railway systems; industrial day.
This book covers the theory, design and applications of computer networks, distributed computing and information systems. Networks of today are going through a rapid evolution, and there are many emerging areas of information networking and their applications. Heterogeneous networking supported by recent technological advances in low-power wireless communications along with silicon integration of various functionalities such as sensing, communications, intelligence and actuations is emerging as a critically important disruptive computer class based on a new platform, networking structure and interface that enable novel, low-cost and high-volume applications. Several of such applications have been difficult to realize because of many interconnections problems. To fulfill their large range of applications, different kinds of networks need to collaborate, and wired and next-generation wireless systems should be integrated in order to develop high-performance computing solutions to problems arising from the complexities of these networks. The aim of the book “Advanced Information Networking and Applications” is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and applications.
This thesis presents Machine Psychology as an interdisciplinary paradigm that integrates learning psychology principles with an adaptive computer system for the development of Artificial General Intelligence (AGI). By synthesizing behavioral psychology with a formal intelligence model, the Non-Axiomatic Reasoning System (NARS), this work explores the potential of operant conditioning paradigms to advance AGI research. The thesis begins by introducing the conceptual foundations of Machine Psychology, detailing its alignment with the theoretical constructs of learning psychology and the formalism of NARS. It then progresses through a series of empirical studies designed to systematically investigate the emergence of increasingly complex cognitive behaviors as NARS interacts with its environment. Initially, operant conditioning is established as a foundational principle for developing adaptive behavior with NARS. Subsequent chapters explore increasingly sophisticated cognitive capabilities, all studied with NARS using experimental paradigms from operant learning psychology: Generalized identity matching, Functional equivalence, and Arbitrarily Applicable Relational Responding. Throughout this research, Machine Psychology is demonstrated to be a promising framework for guiding AGI research, allowing both the manipulation of environmental contingencies and the system’s intrinsic logical processes. The thesis contributes to AGI research by showing how using operant psychological paradigms with NARS can enable cognitive abilities similar to human cognition. These findings set the stage for AGI systems that learn and adapt more like humans, potentially advancing the creation of more general and flexible AI. Denna avhandling introducerar Maskinpsykologi som ett tvärvetenskapligt område där principer från inlärningspsykologi integreras med ett adaptivt datorsystem. Genom att kombinera forskning från beteendepsykologi med en formell modell för intelligens (Non-Axiomatic Reasoning System; NARS), undersöker avhandlingen hur operant betingning kan användas för att driva utvecklingen av Artificiell General Intelligens (AGI) framåt. Avhandlingen börjar med att förklara grunderna i Maskinpsykologi och hur dessa relaterar till både inlärningspsykologi och NARS. Därefter presenteras en serie experiment som systematiskt undersöker hur allt mer komplexa kognitiva beteenden kan uppstå när NARS interagerar med sin omgivning. Till att börja med etableras operant betingning som en central metod för att utveckla adaptiva beteenden med NARS. I de följande kapitlen utforskas hur NARS, genom experiment inspirerade av operant inlärningspsykologi, kan utveckla mer avancerade kognitiva förmågor som till exempel generaliserad identitetsmatchning, funktionell ekvivalens och så kallade arbiträrt applicerbara relationsresponser. Denna forskning visar att Maskinpsykologi är ett lovande verktyg för att vägleda AGI-forskning, eftersom det möjliggör att både påverka omgivningsfaktorer och styra systemets interna logiska processer. Avhandlingen bidrar till AGI-forskning genom att visa hur operanta psykologiska metoder, tillämpade på NARS, kan möjliggöra kognitiva förmågor som liknar mänskligt tänkande. Dessa insikter öppnar nya möjligheter för att utveckla AI-system som kan lära sig och anpassa sig på ett mer mänskligt sätt, vilket kan leda till skapandet av mer generell och flexibel AI.
Edge computing is quickly becoming an important technology throughout a number of fields as businesses and industries alike embrace the benefits it can have in their companies. The streamlining of data is crucial for the development and evolution of businesses in order to keep up with competition and improve functions overall. In order to appropriately utilize edge computing to its full potential, further study is required to examine the potential pitfalls and opportunities of this innovative technology. The Research Anthology on Edge Computing Protocols, Applications, and Integration establishes critical research on the current uses, innovations, and challenges of edge computing across disciplines. The text highlights the history of edge computing and how it has been adapted over time to improve industries. Covering a range of topics such as bandwidth, data centers, and security, this major reference work is ideal for industry professionals, computer scientists, engineers, practitioners, researchers, academicians, scholars, instructors, and students.
This book constitutes the refereed proceedings of 4 workshops held at the 14th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2018, held in Rhodes, Greece, in May 2018. The workshops were the Workshop on Semantics in the Deep: Semantic Analytics for Big Data, SEDSEAL 2018; the Third Workshop on 5G - Putting Intelligence to the Network Edge, 5G-PINE 2018; the 7th Mining Humanistic Data Workshop, MHDW 2018; and the Workshop on Intelligent Cloud and IOT Paradigms in EHealth, HEALTHIOT 2018. The 19 full papers and 5 short papers presented were carefully reviewed and selected from a total of 53 submissions: SEDSEAL accepted 2 full papers out of 5 submissions, 5G-PINE 6 full and one short paper out of 24, MHDW 7 full and 4 short papers out of 15, and HEALTHIOT 4 full papers out of 9. The papers cover topics such as AI in 5G and telecommunications, AI and e-health services, AI in 5G networks, incremental learning, clustering, AI in text mining, visual data analytics, AI in molecular biology, DNA, RNA, proteins, big data analytics, Internet of Things and recommender systems, and AI in biomedical applications.
A comprehensive guide to Fog and Edge applications, architectures, and technologies Recent years have seen the explosive growth of the Internet of Things (IoT): the internet-connected network of devices that includes everything from personal electronics and home appliances to automobiles and industrial machinery. Responding to the ever-increasing bandwidth demands of the IoT, Fog and Edge computing concepts have developed to collect, analyze, and process data more efficiently than traditional cloud architecture. Fog and Edge Computing: Principles and Paradigms provides a comprehensive overview of the state-of-the-art applications and architectures driving this dynamic field of computing while highlighting potential research directions and emerging technologies. Exploring topics such as developing scalable architectures, moving from closed systems to open systems, and ethical issues rising from data sensing, this timely book addresses both the challenges and opportunities that Fog and Edge computing presents. Contributions from leading IoT experts discuss federating Edge resources, middleware design issues, data management and predictive analysis, smart transportation and surveillance applications, and more. A coordinated and integrated presentation of topics helps readers gain thorough knowledge of the foundations, applications, and issues that are central to Fog and Edge computing. This valuable resource: Provides insights on transitioning from current Cloud-centric and 4G/5G wireless environments to Fog Computing Examines methods to optimize virtualized, pooled, and shared resources Identifies potential technical challenges and offers suggestions for possible solutions Discusses major components of Fog and Edge computing architectures such as middleware, interaction protocols, and autonomic management Includes access to a website portal for advanced online resources Fog and Edge Computing: Principles and Paradigms is an essential source of up-to-date information for systems architects, developers, researchers, and advanced undergraduate and graduate students in fields of computer science and engineering.