Download Free Optimization Models In Steganography Using Metaheuristics Book in PDF and EPUB Free Download. You can read online Optimization Models In Steganography Using Metaheuristics and write the review.

This book explores the use of a socio-inspired optimization algorithm (the Cohort Intelligence algorithm), along with Cognitive Computing and a Multi-Random Start Local Search optimization algorithm. One of the most important types of media used for steganography is the JPEG image. Considering four important aspects of steganography techniques – picture quality, high data-hiding capacity, secret text security and computational time – the book provides extensive information on four novel image-based steganography approaches that employ JPEG compression. Academics, scientists and engineers engaged in research, development and application of steganography techniques, optimization and data analytics will find the book’s comprehensive coverage an invaluable resource.
OBJECT DETECTION BY STEREO VISION IMAGES Since both theoretical and practical aspects of the developments in this field of research are explored, including recent state-of-the-art technologies and research opportunities in the area of object detection, this book will act as a good reference for practitioners, students, and researchers. Current state-of-the-art technologies have opened up new opportunities in research in the areas of object detection and recognition of digital images and videos, robotics, neural networks, machine learning, stereo vision matching algorithms, soft computing, customer prediction, social media analysis, recommendation systems, and stereo vision. This book has been designed to provide directions for those interested in researching and developing intelligent applications to detect an object and estimate depth. In addition to focusing on the performance of the system using high-performance computing techniques, a technical overview of certain tools, languages, libraries, frameworks, and APIs for developing applications is also given. More specifically, detection using stereo vision images/video from its developmental stage up till today, its possible applications, and general research problems relating to it are covered. Also presented are techniques and algorithms that satisfy the peculiar needs of stereo vision images along with emerging research opportunities through analysis of modern techniques being applied to intelligent systems. Audience Researchers in information technology looking at robotics, deep learning, machine learning, big data analytics, neural networks, pattern & data mining, and image and object recognition. Industrial sectors include automotive electronics, security and surveillance systems, and online retailers.
This book presents the latest insights and developments in the field of socio-cultural inspired algorithms. Akin to evolutionary and swarm-based optimization algorithms, socio-cultural algorithms belong to the category of metaheuristics (problem-independent computational methods) and are inspired by natural and social tendencies observed in humans by which they learn from one another through social interactions. This book is an interesting read for engineers, scientists, and students studying/working in the optimization, evolutionary computation, artificial intelligence (AI) and computational intelligence fields.
This book is a comprehensive guide for agricultural and meteorological predictions. It presents advanced models for predicting target variables. The different details and conceptions in the modelling process are explained in this book. The models of the current book help better agriculture and irrigation management. The models of the current book are valuable for meteorological organizations. Meteorological and agricultural variables can be accurately estimated with this book's advanced models. Modelers, researchers, farmers, students, and scholars can use the new optimization algorithms and evolutionary machine learning to better plan and manage agriculture fields. Water companies and universities can use this book to develop agricultural and meteorological sciences. The details of the modeling process are explained in this book for modelers. Also this book introduces new and advanced models for predicting hydrological variables. Predicting hydrological variables help water resource planning and management. These models can monitor droughts to avoid water shortage. And this contents can be related to SDG6, clean water and sanitation. The book explains how modelers use evolutionary algorithms to develop machine learning models. The book presents the uncertainty concept in the modeling process. New methods are presented for comparing machine learning models in this book. Models presented in this book can be applied in different fields. Effective strategies are presented for agricultural and water management. The models presented in the book can be applied worldwide and used in any region of the world. The models of the current books are new and advanced. Also, the new optimization algorithms of the current book can be used for solving different and complex problems. This book can be used as a comprehensive handbook in the agricultural and meteorological sciences. This book explains the different levels of the modeling process for scholars.
This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: “Recent Developments in Metaheuristics” and “Metaheuristics for Production Systems”, books in Springer Series in Operations Research/Computer Science Interfaces. The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields.
The digital age is ripe with emerging advances and applications in technological innovations. Mimicking the structure of complex systems in nature can provide new ideas on how to organize mechanical and personal systems. The Handbook of Research on Modeling, Analysis, and Application of Nature-Inspired Metaheuristic Algorithms is an essential scholarly resource on current algorithms that have been inspired by the natural world. Featuring coverage on diverse topics such as cellular automata, simulated annealing, genetic programming, and differential evolution, this reference publication is ideal for scientists, biological engineers, academics, students, and researchers that are interested in discovering what models from nature influence the current technology-centric world.
This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.
Advances in machine learning techniques and ever-increasing computing power has helped create a new generation of hardware and software technologies with practical applications for nearly every industry. As the progress has, in turn, excited the interest of venture investors, technology firms, and a growing number of clients, implementing intelligent automation in both physical and information systems has become a must in business. Handbook of Research on Smart Technology Models for Business and Industry is an essential reference source that discusses relevant abstract frameworks and the latest experimental research findings in theory, mathematical models, software applications, and prototypes in the area of smart technologies. Featuring research on topics such as digital security, renewable energy, and intelligence management, this book is ideally designed for machine learning specialists, industrial experts, data scientists, researchers, academicians, students, and business professionals seeking coverage on current smart technology models.
The common use of the Internet and cloud services in transmission of large amounts of data over open networks and insecure channels, exposes that private and secret data to serious situations. Ensuring the information transmission over the Internet is safe and secure has become crucial, consequently information security has become one of the most important issues of human communities because of increased data transmission over social networks. Digital Media Steganography: Principles, Algorithms, and Advances covers fundamental theories and algorithms for practical design, while providing a comprehensive overview of the most advanced methodologies and modern techniques in the field of steganography. The topics covered present a collection of high-quality research works written in a simple manner by world-renowned leaders in the field dealing with specific research problems. It presents the state-of-the-art as well as the most recent trends in digital media steganography. - Covers fundamental theories and algorithms for practical design which form the basis of modern digital media steganography - Provides new theoretical breakthroughs and a number of modern techniques in steganography - Presents the latest advances in digital media steganography such as using deep learning and artificial neural network as well as Quantum Steganography