Download Free Optimization And Security Challenges In Smart Power Grids Book in PDF and EPUB Free Download. You can read online Optimization And Security Challenges In Smart Power Grids and write the review.

This book provides an overview of state-of-the-art research on “Systems and Optimization Aspects of Smart Grid Challenges.” The authors have compiled and integrated different aspects of applied systems optimization research to smart grids, and also describe some of its critical challenges and requirements. The promise of a smarter electricity grid could significantly change how consumers use and pay for their electrical power, and could fundamentally reshape the current Industry. Gaining increasing interest and acceptance, Smart Grid technologies combine power generation and delivery systems with advanced communication systems to help save energy, reduce energy costs and improve reliability. Taken together, these technologies support new approaches for load balancing and power distribution, allowing optimal runtime power routing and cost management. Such unprecedented capabilities, however, also present a set of new problems and challenges at the technical and regulatory levels that must be addressed by Industry and the Research Community.
The Smart Grid is a modern electricity grid allowing for distributed, renewable intermittent generation, partly owned by consumers. This requires advanced control and communication technologies in order to provide high quality power supply and secure generation, transmission and distribution. This book outlines these emerging technologies.
Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems, and consolidates some of the most promising recent research in smart grid modeling, control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles, optimal demand response, new modeling methods for electricity markets, cyber-security,data analysis and wide-area control using synchronized phasor measurements.
Power systems are increasingly collecting large amounts of data due to the expansion of the Internet of Things into power grids. In a smart grids scenario, a huge number of intelligent devices will be connected with almost no human intervention characterizing a machine-to-machine scenario, which is one of the pillars of the Internet of Things. The book characterizes and evaluates how the emerging growth of data in communications networks applied to smart grids will impact the grid efficiency and reliability. Additionally, this book discusses the various security concerns that become manifest with Big Data and expanded communications in power grids. Provide a general description and definition of big data, which has been gaining significant attention in the research community. Introduces a comprehensive overview of big data optimization methods in power system. Reviews the communication devices used in critical infrastructure, especially power systems; security methods available to vet the identity of devices; and general security threats in CI networks. Presents applications in power systems, such as power flow and protection. Reviews electricity theft concerns and the wide variety of data-driven techniques and applications developed for electricity theft detection.
This book provides a thorough treatment of privacy and security issues for researchers in the fields of smart grids, engineering, and computer science. It presents comprehensive insight to understanding the big picture of privacy and security challenges in both physical and information aspects of smart grids. The authors utilize an advanced interdisciplinary approach to address the existing security and privacy issues and propose legitimate countermeasures for each of them in the standpoint of both computing and electrical engineering. The proposed methods are theoretically proofed by mathematical tools and illustrated by real-world examples.
This book addresses different algorithms and applications based on the theory of multiobjective goal attainment optimization. In detail the authors show as the optimal asset of the energy hubs network which (i) meets the loads, (ii) minimizes the energy costs and (iii) assures a robust and reliable operation of the multicarrier energy network can be formalized by a nonlinear constrained multiobjective optimization problem. Since these design objectives conflict with each other, the solution of such the optimal energy flow problem hasn’t got a unique solution and a suitable trade off between the objectives should be identified. A further contribution of the book consists in presenting real-world applications and results of the proposed methodologies developed by the authors in three research projects recently completed and characterized by actual implementation under an overall budget of about 23 million €.
Smart grid (SG), also called intelligent grid, is a modern improvement of the traditional power grid that will revolutionize the way electricity is produced, delivered, and consumed. Studying key concepts such as advanced metering infrastructure, distribution management systems, and energy management systems will support the design of a cost-effective, reliable, and efficient supply system, and will create a real-time bidirectional communication means and information exchange between the consumer and the grid operator of electric power. Optimizing and Measuring Smart Grid Operation and Control is a critical reference source that presents recent research on the operation, control, and optimization of smart grids. Covering topics that include phase measurement units, smart metering, and synchrophasor technologies, this book examines all aspects of modern smart grid measurement and control. It is designed for engineers, researchers, academicians, and students.
This brief focuses on stochastic energy optimization for distributed energy resources in smart grids. Along with a review of drivers and recent developments towards distributed energy resources, this brief presents research challenges of integrating millions of distributed energy resources into the grid. The brief then proposes a novel three-level hierarchical architecture for effectively integrating distributed energy resources into smart grids. Under the proposed hierarchical architecture, distributed energy resource management algorithms at the three levels (i.e., smart home, smart neighborhood, and smart microgrid) are developed in this brief based on stochastic optimization that can handle the involved uncertainties in the system.
Smart Grids as Cyber Physical Systems, a new two-volume set from Wiley-Scrivener, provides a comprehensive overview of the fundamental security of supervisory control and data acquisition (SCADA) systems, offering clarity on specific operating and security issues that may arise that deteriorate the overall operation and efficiency of smart grid systems. It also provides techniques to monitor and protect systems, as well as aids for designing a threat-free system. This title discusses how artificial intelligence (AI) may be extensively deployed in the prediction of energy generation, electric grid-related line loss prediction, load forecasting, and for predicting equipment failure prevention. It also discusses power generation systems, building service systems, and explores advances in machine learning, artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms. Additionally, we will explore research contribution of experts in CPS infrastructure systems, incorporating sustainability by embedding computing and communication in day-to-day smart grid applications. This book will be of immense use to practitioners in industries focusing on adaptive configuration and optimization in smart grid systems. Through case studies, it offers a rigorous introduction to the theoretical foundations, techniques, and practical solutions CPS offers. Building CPS with effective communication, control, intelligence, and security is discussed from societal and research perspectives and a forum for researchers and practitioners to exchange ideas and achieve progress in CPS is provided by highlighting applications, advances, and research challenges. This book offers a comprehensive look at ICS cyber threats, attacks, metrics, risk, situational awareness, intrusion detection, and security testing, providing a valuable reference set for current system owners who wish to configure and operate their ICSs securely.
Smart Energy Grid Engineering provides in-depth detail on the various important engineering challenges of smart energy grid design and operation by focusing on advanced methods and practices for designing different components and their integration within the grid. Governments around the world are investing heavily in smart energy grids to ensure optimum energy use and supply, enable better planning for outage responses and recovery, and facilitate the integration of heterogeneous technologies such as renewable energy systems, electrical vehicle networks, and smart homes around the grid. By looking at case studies and best practices that illustrate how to implement smart energy grid infrastructures and analyze the technical details involved in tackling emerging challenges, this valuable reference considers the important engineering aspects of design and implementation, energy generation, utilization and energy conservation, intelligent control and monitoring data analysis security, and asset integrity. Includes detailed support to integrate systems for smart grid infrastructures Features global case studies outlining design components and their integration within the grid Provides examples and best practices from industry that will assist in the migration to smart grids