Download Free Optimal Design Of An Air Cooled Condenser For Flue Gas From A Power Plant Book in PDF and EPUB Free Download. You can read online Optimal Design Of An Air Cooled Condenser For Flue Gas From A Power Plant and write the review.

Design of Thermal Energy Systems Pradip Majumdar, Northern Illinois University, USA A comprehensive introduction to the design and analysis of thermal energy systems Design of Thermal Energy Systems covers the fundamentals and applications in thermal energy systems and components, including conventional power generation and cooling systems, renewable energy systems, heat recovery systems, heat sinks and thermal management. Practical examples are used throughout and are drawn from solar energy systems, fuel cell and battery thermal management, electrical and electronics cooling, engine exhaust heat and emissions, and manufacturing processes. Recent research topics such as steady and unsteady state simulation and optimization methods are also included. Key features: Provides a comprehensive introduction to the design and analysis of thermal energy systems, covering fundamentals and applications. Includes a wide range of industrial application problems and worked out example problems. Applies thermal analysis techniques to generate design specification and ratings. Demonstrates how to design thermal systems and components to meet engineering specifications. Considers alternative options and allows for the estimation of cost and feasibility of thermal systems. Accompanied by a website including software for design and analysis, a solutions manual, and presentation files with PowerPoint slides. The book is essential reading for: practicing engineers in energy and power industries; consulting engineers in mechanical, electrical and chemical engineering; and senior undergraduate and graduate engineering students.
This volume collects together the presentations at the Eighth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2014, an event that brings together researchers, educators, and practitioners to identify new challenges and opportunities for process and product design. The chemical industry is currently entering a new phase of rapid evolution. The availability of low-cost feedstocks from natural gas is causing renewed investment in basic chemicals in the OECD, while societal pressures for sustainability and energy security continue to be key drivers in technology development and product selection. This dynamic environment creates opportunities to launch new products and processes and to demonstrate new methodologies for innovation, synthesis and design. FOCAPD-2014 fosters constructive interaction among thought leaders from academia, industry, and government and provides a showcase for the latest research in product and process design. - Focuses exclusively on the fundamentals and applications of computer-aided design for the process industries. - Provides a fully archival and indexed record of the FOCAPD14 conference - Aligns the FOCAPD series with the ESCAPE and PSE series
This book is a compilation of the various recently developed techniques emphasizing better chemical processes and products, with state-of-the-art contributions by world-renowned leaders in process design and optimization. It covers various areas such as grass-roots design, retrofitting, continuous and batch processing, energy efficiency, separations, and pollution prevention, striking a balance between fundamental techniques and applications. The book also contains industrial applications and will serve as a good compilation of recent industrial experience for which the process design and optimization techniques were applied to enhance sustainability. Academic researchers and industrial practitioners will find this book useful as a review of systematic approaches and best practices in sustainable design and optimization of industrial processes. The book is accompanied by some electronic supplements (i.e., models and programs) for selected chapters.
This comprehensive volume provides a complete, authoritative, up-to-date reference for all aspects of power plant engineering. Coverage ranges from engineering economics to coal and limestone handling, from design processes to plant thermal heat balances. Both theory and practical applications are covered, giving engineers the information needed to plan, design, construct, upgrade, and operate power plants. Power Plant Engineering is the culmination of experience of hundreds of engineers from Black & Veatch, a leading firm in the field for more than 80 years. The authors review all major power generating technologies, giving particular emphasis to current approaches. Special features of the book include: * More than 1000 figures and lines drawings that illustrate all aspects of the subject. * Coverage of related components and systems in power plants such as turbine-generators, feedwater heaters, condenser, and cooling towers. * Definitions and analyses of the features of various plant systems. * Discussions of promising future technologies. Power Plant Engineering will be the standard reference in the professional engineer's library as the source of information on steam power plant generation. In addition, the clear presentation of the material will make this book suitable for use by students preparing to enter the field.
Power Plant Instrumentation and Control Handbook, Second Edition, provides a contemporary resource on the practical monitoring of power plant operation, with a focus on efficiency, reliability, accuracy, cost and safety. It includes comprehensive listings of operating values and ranges of parameters for temperature, pressure, flow and levels of both conventional thermal power plant and combined/cogen plants, supercritical plants and once-through boilers. It is updated to include tables, charts and figures from advanced plants in operation or pilot stage. Practicing engineers, freshers, advanced students and researchers will benefit from discussions on advanced instrumentation with specific reference to thermal power generation and operations. New topics in this updated edition include plant safety lifecycles and safety integrity levels, advanced ultra-supercritical plants with advanced firing systems and associated auxiliaries, integrated gasification combined cycle (IGCC) and integrated gasification fuel cells (IGFC), advanced control systems, and safety lifecycle and safety integrated systems. - Covers systems in use in a wide range of power plants: conventional thermal power plants, combined/cogen plants, supercritical plants, and once through boilers - Presents practical design aspects and current trends in instrumentation - Discusses why and how to change control strategies when systems are updated/changed - Provides instrumentation selection techniques based on operating parameters. Spec sheets are included for each type of instrument - Consistent with current professional practice in North America, Europe, and India - All-new coverage of Plant safety lifecycles and Safety Integrity Levels - Discusses control and instrumentation systems deployed for the next generation of A-USC and IGCC plants
This handbook surveys the range of methods and fuel types used in generating energy for industry, transportation, and heating and cooling of buildings. Solar, wind, biomass, nuclear, geothermal, ocean and fossil fuels are discussed and compared, and the thermodynamics of energy conversion is explained. Appendices are provided with fully updated data. Thoroughly revised, this second edition surveys the latest advances in energy conversion from a wide variety of currently available energy sources. It describes energy sources such as fossil fuels, biomass (including refuse-derived biomass fuels), nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycles, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear power.