Download Free Optimal Connected Coverage For Wireless Sensor Networks Book in PDF and EPUB Free Download. You can read online Optimal Connected Coverage For Wireless Sensor Networks and write the review.

This book will serve as a reference, presenting state-of-the-art research on theoretical aspects of optimal sensor coverage problems. Readers will find it a useful tool for furthering developments on theory and applications of optimal coverage; much of the content can serve as material for advanced topics courses at the graduate level. The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more. Topics are introduced in a natural order from simple covers to connected covers, to the lifetime problem. Later, the book begins revisiting earlier problems ranging from the introduction of weights to coverage by k sensors and partial coverage, and from sensor heterogeneity to novel problems such as the barrier coverage problem. The book ends with coverage of mobile sensors, camera sensors, energy-harvesting sensors, underwater sensors, and crowdsensing.
Abstract: Coverage and connectivity are two key properties of wireless networks, particularly wireless sensor networks (WSNs). Deploying sensor nodes to simultaneously achieve coverage and connectivity requirements is a fundamental problem in WSNs. It is insufficient to consider coverage alone when deploying a wireless sensor network; connectivity must also be considered. While moderate loss of coverage can be tolerated by WSN applications, loss of connectivity can be fatal. Moreover, since sensors are subject to unanticipated failures after deployment, it is not sufficient for a wireless sensor network to just be connected, it should be k-connected (for k> 1). In this dissertation, we propose optimal deployment patterns to achieve both full coverage and k-connectivity for k=1,2,3,4,5, and 6, respectively, and prove their optimality for all values of r_c/r_s, where r_c is the communication radius and r_s is the sensing radius. By optimal deployment patterns, we mean those patterns that can achieve desired coverage and connectivity requirements with the fewest sensor nodes. Our results' fundamentality and generality facilitate their practical applications in, e.g., wireless mesh networks and 802.15.4 networks. We discover an interesting emph{pattern mutation} phenomenon in pattern evolution as r_c/r_s continuously changes. This phenomenon has both theoretical and practical implications. We also study several practical issues in wireless sensor network deployment in this dissertation.
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intelligence and working on these topics.
This book discusses topics in mission-oriented sensor networks and systems research and practice, enabling readers to understand the major technical and application challenges of these networks, with respect to their architectures, protocols, algorithms, and application design. It also presents novel theoretical and practical ideas, which have led to the development of solid foundations for the design, analysis, and implementation of energy-efficient, reliable, and secure mission-oriented sensor network applications. Covering various topics, including sensor node architecture, sensor deployment, mobile coverage, mission assignment, detection, localization, tracking, data dissemination, data fusion, topology control, geometric routing, location privacy, secure communication, and cryptograph, it is a valuable resource for computer scientists, researchers, and practitioners in academia and industry.
Collecting and processing data is a necessary aspect of living in a technologically advanced society. Whether it’s monitoring events, controlling different variables, or using decision-making applications, it is important to have a system that is both inexpensive and capable of coping with high amounts of data. As the application of these networks becomes more common, it becomes imperative to evaluate their effectiveness as well as other opportunities for possible implementation in the future. Sensor Technology: Concepts, Methodologies, Tools, and Applications is a vital reference source that brings together new ways to process and monitor data and to put it to work in everything from intelligent transportation systems to healthcare to multimedia applications. It also provides inclusive coverage on the processing and applications of wireless communication, sensor networks, and mobile computing. Highlighting a range of topics such as internet of things, signal processing hardware, and wireless sensor technologies, this multi-volume book is ideally designed for research and development engineers, IT specialists, developers, graduate students, academics, and researchers.
This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.
Abstract: Wireless sensor networks (WSN) promise to revolutionize the way we monitor our surroundings by enhancing our senses. Prototype systems are already being demonstrated. Several fundamental research issues, however, remain unaddressed. Sensing events being the main task of a WSN, appropriately addressing the issue of coverage is critical. In this dissertation, we make a two fold contribution on establishing a strong foundation for the issue of coverage. First, we argue that a single concept of coverage such as k-full coverage (where every point in the deployment region needs to be within the monitoring range of at least k sensors) does not fit all applications. We propose a new concept of coverage called k-barrier coverage that is appropriate for intrusion detection applications. A WSN provides k-barrier coverage} if it guarantees that every penetrating object is detected by at least k sensors before crossing the barrier of sensors. Second, we address five foundational problems for the issue of k-barrier coverage: optimal deployment pattern, critical conditions, coverage status determination, coverage restoration, and optimal sleep wakeup. The problem of optimal deployment pattern is to determine a pattern of deployment that uses the minimum number of sensors. The problem of critical conditions is to derive conditions that can be used to determine the minimum number of sensors to deploy in probabilistic deployments. The problem of coverage status determination is to determine whether a deployed WSN provides a desired quality of monitoring. The problem of coverage restoration is to determine the minimum number of sensors to deploy, and their locations, such that a desired quality of monitoring can be restored in a deployed WSN. The problem of optimal sleep wakeup is to produce a sleeping schedule for sensors that maximizes the network lifetime. We comprehensively solve four of the five foundational problems. For the problem of critical conditions, we derive the conditions for a weaker notion of k-barrier coverage, called weak k-barrier coverage. In addition, we derive critical conditions for the case of k-full coverage.
Overview and Goals Wireless communication technologies are undergoing rapid advancements. The last few years have experienced a steep growth in research in the area of wireless sensor networks (WSNs). In WSNs, communication takes place with the help of spatially distributedautonomoussensornodesequippedtosensespeci?cinformation. WSNs, especially the ones that have gained much popularity in the recent years, are, ty- cally, ad hoc in nature and they inherit many characteristics/features of wireless ad hoc networks such as the ability for infrastructure-less setup, minimal or no reliance on network planning, and the ability of the nodes to self-organize and self-con?gure without the involvement of a centralized network manager, router, access point, or a switch. These features help to set up WSNs fast in situations where there is no existing network setup or in times when setting up a ?xed infrastructure network is considered infeasible, for example, in times of emergency or during relief - erations. WSNs ?nd a variety of applications in both the military and the civilian population worldwide such as in cases of enemy intrusion in the battle?eld, object tracking, habitat monitoring, patient monitoring, ?re detection, and so on. Even though sensor networks have emerged to be attractive and they hold great promises for our future, there are several challenges that need to be addressed. Some of the well-known challenges are attributed to issues relating to coverage and deployment, scalability, quality-of-service, size, computational power, energy ef?ciency, and security.
The advances in sensor design have decreased the size, weight, and cost of sensors by orders of magnitude, yet with the increase of higher spatial and temporal re- lution and accuracy. With the fast progress of sensors design and communications technique, sensor networks have also been quickly evolving in both research and practical domains in the last decade. More and more sensor networks have been - ployed in real-world to gather information for our daily life. Applications of sensor networks can be found in battle?eld surveillance, environmental monitoring, b- logical detection, smart spaces, industrial diagnostics, etc. Although the technique of sensor networks has a very promising future, many challenges are still deserving lots of research efforts for its successful applications. Thisbookisdevotedtocoveragecontrol,oneofthemostfundamentalandimportant research issues in sensor networks. The aim of the book is to provide tutorial-like and up-to-date reference resources on various coverage control problems in sensor networks, a hot topic that has been intensively researched in recent years. Due to some unique characteristics of sensor networks such as energy constraint and - hoc topology, the coverage problems in sensor networks have many new scenarios and features that entitle them an important research issue in recent years. I have done my best to include in the book the most recent advances, techniques, protocols, results, and ?ndings in this ?eld.
Learn all you need to know about wireless sensor networks! Protocols and Architectures for Wireless Sensor Networks provides a thorough description of the nuts and bolts of wireless sensor networks. The authors give an overview of the state-of-the-art, putting all the individual solutions into perspective with one and other. Numerous practical examples, case studies and illustrations demonstrate the theory, techniques and results presented. The clear chapter structure, listing learning objectives, outline and summarizing key points, help guide the reader expertly through the material. Protocols and Architectures for Wireless Sensor Networks: Covers architecture and communications protocols in detail with practical implementation examples and case studies. Provides an understanding of mutual relationships and dependencies between different protocols and architectural decisions. Offers an in-depth investigation of relevant protocol mechanisms. Shows which protocols are suitable for which tasks within a wireless sensor network and in which circumstances they perform efficiently. Features an extensive website with the bibliography, PowerPoint slides, additional exercises and worked solutions. This text provides academic researchers, graduate students in computer science, computer engineering, and electrical engineering, as well as practitioners in industry and research engineers with an understanding of the specific design challenges and solutions for wireless sensor networks. Check out www.wiley.com/go/wsn for accompanying course material! "I am deeply impressed by the book of Karl & Willig. It is by far the most complete source for wireless sensor networks...The book covers almost all topics related to sensor networks, gives an amazing number of references, and, thus, is the perfect source for students, teachers, and researchers. Throughout the book the reader will find high quality text, figures, formulas, comparisons etc. - all you need for a sound basis to start sensor network research." Prof. Jochen Schiller, Institute of Computer Science, Freie Universität Berlin