Download Free Optics At The Nanometer Scale Book in PDF and EPUB Free Download. You can read online Optics At The Nanometer Scale and write the review.

Fully revised and in its second edition, this standard reference on nano-optics is ideal for graduate students and researchers alike.
Optics at the Nanometer Scale: Imaging and Storing with Photonic Near Fields deals with the fundamentals of and the latest developments and applications of near-field optical microscopy, giving basic accounts of how and under what circumstances superresolution beyond the half- wavelength Rayleigh limit is achieved. Interferometric and fluorescence techniques are also described, leading to molecular and even atomic resolution using light. The storage of optical information at this level of resolution is also addressed.
This book explores the physical phenomena underlying the optical responses of nanoscale systems and uses this knowledge to explain their behavior, which is very different to what is encountered on the macroscopic scale. In the first three chapters, the authors discuss important aspects of wave optics on surfaces and at small scales, such as the optical interference near surfaces, the physical origin of the index of refraction, and how imaging optical fields can be used to enhance resolution in optical diffraction microscopy. The last two chapters treat a concept on the consequence of the finite size of the focal spot in optical spectroscopy and how the index of refraction can be related to scattering of an ensemble of discrete scatterers. The concepts described here are important to understanding the optical properties of nanoparticles or nanostructured surfaces and are not covered in most fundamental optics courses. This book is designed for researchers and graduate students looking for an introduction to optics at small scales.
The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume. The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique.
Subwavelength and Nanometer Diameter Optical Fibers provides a comprehensive and up-to-date coverage of research on nanoscale optical fibers including the basic physics and engineering aspects of the fabrication, properties and applications. The book discusses optical micro/nanofibers that represent a perfect fusion of optical fibers and nanotechnology on subwavelength scale and covers a broad range of topics in modern optical engineering, photonics and nanotechnology spanning from fiber optics, near-field optics, nonlinear optics, atom optics to nanofabrication and microphotonic components/devices. It is intended for researchers and graduate students in the fields of photonics, nanotechnology, optical engineering and materials science. Dr. Limin Tong is a professor at Department of Optical Engineering and State Key Laboratory of Modern Optical Instrumentation of Zhejiang University, China; Dr. Michael Sumetsky is a researcher at OFS Laboratories, USA.
"This groundbreaking book focuses on near-field microscopy which has opened up optical processes at the nanoscale for direct inspection. Further, it explores the emerging area of nano-optics which promises to make possible optical microscopy with true nanometer resolution. This frontline resource helps you achieve high resolution optical imaging of biological species and functional materials. You also find guidance in the imaging of optical device operation and new nanophotonics functionalities"--EBL.
Light and light based technologies have played an important role in transforming our lives via scientific contributions spanned over thousands of years. In this book we present a vast collection of articles on various aspects of light and its applications in the contemporary world at a popular or semi-popular level. These articles are written by the world authorities in their respective fields. This is therefore a rare volume where the world experts have come together to present the developments in this most important field of science in an almost pedagogical manner. This volume covers five aspects related to light. The first presents two articles, one on the history of the nature of light, and the other on the scientific achievements of Ibn-Haitham (Alhazen), who is broadly considered the father of modern optics. These are then followed by an article on ultrafast phenomena and the invisible world. The third part includes papers on specific sources of light, the discoveries of which have revolutionized optical technologies in our lifetime. They discuss the nature and the characteristics of lasers, Solid-state lighting based on the Light Emitting Diode (LED) technology, and finally modern electron optics and its relationship to the Muslim golden age in science. The book’s fourth part discusses various applications of optics and light in today's world, including biophotonics, art, optical communication, nanotechnology, the eye as an optical instrument, remote sensing, and optics in medicine. In turn, the last part focuses on quantum optics, a modern field that grew out of the interaction of light and matter. Topics addressed include atom optics, slow, stored and stationary light, optical tests of the foundation of physics, quantum mechanical properties of light fields carrying orbital angular momentum, quantum communication, and Wave-Particle dualism in action.
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
This book focuses on "Nanometer Scale Science and Technology''. This is one of the most rapidly expanding research fields and it is considered one of the most important issues in forming future societies. Nanoscience and nanotechnology are at the interface between physics, chemistry, engineering and, most importantly, biology. The most fundamental processes of living matter occur on the nanometer scale. Micro-electrical mechanical systems are approaching the dimensions of biological cells, opening up the possibility of connecting machines to individual cells. This book is based on local probes (STM, AFM, SNOM) and related supreme technological achievements. These topics are extensively covered in the book, mainly devoted to instrumentation aspects. From a more fundamental point of view it also covers advanced subjects such as clusters, nanocontacts, photonic band gap materials, atom manipulation by light, atom optics with Bose-Einstein condensates and quantum computing.