Download Free Optical Spatial Solitons In Photorefractive Materials Book in PDF and EPUB Free Download. You can read online Optical Spatial Solitons In Photorefractive Materials and write the review.

This book highlights recent advances of optical spatial solitons in photorefractive materials ranging broadly from the coupling, modulation instability, effect of pyroelectricity, and the stability of photorefractive solitons, among other topics. Photorefractive solitons have been at the forefront of research because of their formation at low laser powers and unique saturable nonlinearity present in photorefractive materials which supports solitons in (2+1) D. There has been a spurt in research on photorefractive solitons recently, which has contributed to a greater understanding of the theoretical foundation of photorefractive solitons as also of their various interesting and practical applications. The book elucidates the diversity of photorefractive solitons and provides a good resource for students, researchers, and professionals in the area of nonlinear optics. ​
Soliton-based concepts open the road for newly designed laser sources, new frequency converters and high-intensity laser-material interactions. Optical solitons as stable spatial patterns of complex nonlinear systems allow for the control of the diffraction of optical beams. Solitons also prevent unwanted chaotic behavior. Thus, solitary wave physics plays a significant role from modern optical physics to optical communication, optical switching, and optical storage. The book gives an updated overview of optical solitons and can serve as a reference and guide for advanced students and scientists working in the field and related areas of science where solitons are observed.
The photorefractive effect is now firmly established as one of the highest-sensitivity nonlinear optical effects, making it an attractive choice for use in many optical holographic processing applications. As with all technologies based on advanced materials, the rate of progress in the development of photorefractive applications has been principally limited by the rate at which breakthroughs in materials science have supplied better photorefractive materials. The last ten years have seen an upsurge of interest in photorefractive applications because of several advances in the synthesis and growth of new and sensitive materials. This book is a collection of many of the most important recent developments in photorefractive effects and materials. The introductory chapter, which provides the necessary tools for understanding a wide variety of photorefractive phenomena, is followed by seven contributed chapters that offer views of the state-of-the-art in several different material systems. The second chapter represents the most detailed study to date on the growth and photorefractive performance of BaTi03, one of the most important photorefractive ferroelectrlcs. The third chapter describes the process of permanently fixing holographic gratings in ferroelectrics, important for volumetric data storage with ultra-high data densities. The fourth chapter describes the discovery and theory of photorefractive spatial solitons. Photorefractive polymers are an exciting new class of photo refractive materials, described in the fifth chapter. Polymers have many advantages, primarily related to fabrication, that could promise a breakthrough to the marketplace because of ease and low-cost of manufacturing.
Multinary compounds are now used in a wide range of devices, including photovoltaic solar cells, light emitters and detectors, and piezoelectric actuators. Ternary and Multinary Compounds provides an interdisciplinary forum for scientists and engineers working on fundamental and applied aspects of these materials. The volume focuses on optoelectronic properties, electronic band structure, charge carrier transport, optical and magnetic properties, and superconductivity. It includes chapters on the research and development of new techniques and novel materials, such as laser ablation deposition and ferroelectrics.
Solitary wave physics plays a significant role from modern optical physics to optical communication, optical switching and optical storage. This book gives an updated overview of optical solitons, as a reference and guide for advanced students and scientists working in the field.
Scattering is the collision of two objects that results in a change of trajectory and energy. For example, in particle physics, such as electrons, photons, or neutrons are "scattered off" of a target specimen, resulting in a different energy and direction. In the field of electromagnetism, scattering is the random diffusion of electromagnetic radiation from air masses is an aid in the long-range sending of radio signals over geographic obstacles such as mountains. This type of scattering, applied to the field of acoustics, is the spreading of sound in many directions due to irregularities in the transmission medium. Volume I of Scattering will be devoted to basic theoretical ideas, approximation methods, numerical techniques and mathematical modeling. Volume II will be concerned with basic experimental techniques, technological practices, and comparisons with relevant theoretical work including seismology, medical applications, meteorological phenomena and astronomy. This reference will be used by researchers and graduate students in physics, applied physics, biophysics, chemical physics, medical physics, acoustics, geosciences, optics, mathematics, and engineering. This is the first encyclopedic-range work on the topic of scattering theory in quantum mechanics, elastodynamics, acoustics, and electromagnetics. It serves as a comprehensive interdisciplinary presentation of scattering and inverse scattering theory and applications in a wide range of scientific fields, with an emphasis, and details, up-to-date developments. Scattering also places an emphasis on the problems that are still in active current research. The first interdisciplinary reference source on scattering to gather all world expertise in this technique Covers the major aspects of scattering in a common language, helping to widening the knowledge of researchers across disciplines The list of editors, associate editors and contributors reads like an international Who's Who in the interdisciplinary field of scattering
This is the first volume of a set of three within the Springer Series in Optical Sciences, and is devoted to photorefractive effects, photorefractive materials, and their applications. Since the publication of our first two Springer books on Photorefractive Materials and Their Applications (Topics in Applied Physics, Vols. 61 and 62) almost 20 years ago, a lot of research has been done in this area. New and often expected effects have been discovered, theoretical models developed, known effects finally explained, and novel applications proposed. We believe that the field has now reached a high level of maturity, even if research continues in all areas mentioned above and with new discoveries arriving quite regularly. We therefore have decided to invite some of the top experts in the field to put together the state of the art in their respective fields. This after we had been encouraged to do so for more than ten years by the publisher, due to the fact that the former volumes were long out of print.
Reviews non-linear optical phenomena related with materials and crystals, and plasmonic effects on device fabrications Contains a detailed analysis on photonic crystal with its applications in making all-optical passive components Focusses on nonlinear optics, more precisely on crystals and materials, and computational aspects on evaluating their properties from Maxwell’s equations. Presents in extensive study on physics of EBG structures for application in antenna and high-frequency communications Includes metamaterials and metasurfaces for applications in photonics as well as in microwave engineering for high-frequency communication systems
This new book gathers leading research from throughout the world.
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, the theory of polariton solitons in semiconductor microcavities, and Terahertz waves.