Download Free Optical Properties Of Low Dimensional Materials Book in PDF and EPUB Free Download. You can read online Optical Properties Of Low Dimensional Materials and write the review.

This book surveys recent experimental and theoretical studies on optical properties of low-dimensional materials, e.g., artificial crystals in zeolites, C60 and its related compounds, silicon nanostructures including porous Si, II-VI and III-V semiconductor quantum structures, and Pb-based natural quantum-well systems. The eight excellent detailed review articles are written by authorities on each field in Japan. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional characters contributing to a new research field of condensed matter and optical physics.
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.
This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promising researchers in each field. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional electronic characters and electron-lattice couplings, which offer a new research field of materials science as well as condensed-matter and optical physics. Volumes 1 and 2 are interrelated but can be read independently. They are pitched at the level of graduate students and are useful to both students and scientists.
This book focuses on the fundamental phenomena at nanoscale. It covers synthesis, properties, characterization and computer modelling of nanomaterials, nanotechnologies, bionanotechnology, involving nanodevices. Further topics are imaging, measuring, modeling and manipulating of low dimensional matter at nanoscale. The topics covered in the book are of vital importance in a wide range of modern and emerging technologies employed or to be employed in most industries, communication, healthcare, energy, conservation , biology, medical science, food, environment, and education, and consequently have great impact on our society.
This book surveys recent experimental and theoretical studies on optical properties of low-dimensional materials, e.g., artificial crystals in zeolites, 60 and its related compounds, silicon nanostructures including porous Si, II-VI and III-V semiconductor quantum structures, and Pb-based natural quantum-well systems. The eight excellent detailed review articles are written by authorities on each field in Japan. All the materials introduced in this book yield new optical phenomena originating from their mesoscopic and low-dimensional characters contributing to a new research field of condensed matter and optical physics.
The last few years have seen dramatic advances in the growth, fabrication and characterization of low-dimensional materials and nanostructures. Most studies of these artificially engineered materials have been driven by their potential for device applications that involve smaller and smaller physical dimensions. In particular, the dynamical properties of these materials are of fundamental interest for the devices that involve high-frequency operation and/or switching. Consequently, the different excitations, vibrational, magnetic, optical, electronic, and so on, need to be understood from the perspective of how their properties are modified in finite structures, especially on the nanometre length scale due to the presence of surfaces and interfaces.
This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.
In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include: quantum structures of semiconductors, spintronics, photonic crystals, surface plasmons in metallic nanostructures, photonic metamaterials, liquid crystal materials, organic LED materials and magnet-optics.
Low Dimensional Materials: Bridging the Fundamental Principles to Practice Applications provides an overview of research on low-dimensional materials, devices, and their applications. There are seven chapters in the book, starting from the basic quantum theory in chapter one, to the control and characterization of the unique structures (chapters two and four), to the relation of the physical and chemical properties with structures (chapter five), and to the practical and promising applications in energy, information, and health (chapter six), before conclusions and future outlook in chapter seven. - Discusses the whole field of low-dimensional materials, from quantum mechanics and low dimensional effects to structure-property relations, various methods of fabrication and assembly techniques, and a characterization of atomic and interface structures - Covers a wide range of topics, making it a 'map' for readers to understand the fundamentals of low-dimensional materials - Written with a 'bottom-up approach, with a solid foundation of quantum mechanics, thermodynamics, and energy transport in low-dimensional systems