Download Free Optical Elements Book in PDF and EPUB Free Download. You can read online Optical Elements and write the review.

"Given the many different applications and uses of diffractive optics, the importance of this field cannot be underestimated. This book supplements the available literature on diffractive optic elements (DOEs) by equipping readers with the skills to begin designing, simulating, and fabricating diffractive optics. The design of DOEs is presented with simple equations and step-by-step procedures for simulation--from the simplest 1D grating to the more complex multifunctional DOEs--and analyzing their diffraction patterns using MATLAB. The fundamentals of fabrication techniques such as photolithography, electron beam lithography, and focused ion beam lithography with basic instructions for the beginner are presented. Basic error analysis and error-correction techniques for a few cases are also discussed. The contents of all the chapters are supported throughout by practical exercises and clearly commented MATLAB® codes (the codes are also on an accompanying CD), making this book useful even to a novice programmer"--
The field of optics has been accelerating at an unprecedented rate, due both to the tremendous growth of the field of fiber-optic communications, and to the improvement of optical materials and devices. Throughput capabilities of fiber systems are accelerating faster than Moore's law, the famous growth rate of silicon chip capability, which has propelled that industry relentlessly over decades. In addition, new optical storage techniques push the limits of information density, with an ever decreasing cost per bit of storage. Economic investment in photonics is at an all-time high. At the same time, other fields of optics, adaptive optics for instance, are bringing new capabilities to more classical applications such as astronomical imaging. New lasers continue to be developed, with applications in display, sensing, and biomedicine following at ever-shorter intervals after the initial discoveries. Given this background, the NATO Mediterranean Dialog Advanced Research Workshop on Unconventional Optical Elements for Information Storage, Processing and Communications, held in Israel on October 19-21, 1998, came at an opportune moment in the history of optics. Its aim was to overview the current state-of-the-art and encourage cooperation in the Mediterranean region, with a view to highlighting and enhancing the existing potential for further development and innovation. The workshop included participants from Belgium, France, Germany, Greece, Israel, Italy, Jordan, Morocco, Portugal, Romania, Russia, Switzerland, Turkey, United Kingdom and USA.
Modern optical systems rely on leading-edge production technologies, especially when using aspherical optical elements. Due to the inherent complexity of aspheres, all efforts to push the technological limits are risky. Thus, to minimize risk, clear decisions based on a good understanding of technology are indispensable. This compendium is written as an optical technology reference book for development and production engineers. With contributions from worldwide experts, this book aids in mitigating the risk in adopting new asphere production technologies.
A textbook for elementary optical design that treats lasers, modulators, and scanners as part of the design process. Moves from the simplest concepts in optics to a basic understanding of ray tracing in optical systems, the components of those systems, and the process by which a design is produced. Features numerous problems, examples, and figures.
This high level monograph for the optics research market explores a large number of novel interactive methods and algorithms for calculating the transmission function of phase diffractive optical elements. The text includes accounts of well-established methods and algorithms for calculating DOEs, but its major contribution is to include current methods and examine the theoretical and practical aspects of synthesising optical components. All the methods discussed in this book have been verified by their numerical simulation. A fast fourier transform algorithm presents computational basis of all the methods considered. A portion of the algorithms have received a comparative study in terms of their suitability for solving the same problem. For a number of the interactive algorithms a rigorous proof to their convergence is given.
This textbook provides a sound foundation in physical optics by covering key concepts in a rigorous but accessible manner. Propagation of electromagnetic waves is examined from multiple perspectives, with explanation of which viewpoints and methods are best suited to different situations. After an introduction to the theory of electromagnetism, reflection, refraction, and dispersion, topics such as geometrical optics, interference, diffraction, coherence, laser beams, polarization, crystallography, and anisotropy are closely examined. Optical elements, including lenses, mirrors, prisms, classical and Fabry-Perot interferometers, resonant cavities, multilayer dielectric structures, interference and spatial filters, diffraction gratings, polarizers, and birefringent plates, are treated in depth. The coverage also encompasses such seldom-covered topics as modeling of general astigmatism via 4x4 matrices, FFT-based numerical methods, and bianisotropy, with a relativistic treatment of optical activity and the Faraday and Fresnel-Fizeau effects. Finally, the history of optics is discussed.
This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.
This text examines the technology behind the plethora of modern industrial and domestic technologies which incorporate micro-optics eg. CDs, cameras, automated manufacturing systems, mobile communications etc. It includes a simple but comprehensive introduction to micro-optical developments design, and an overview of fabrication and replication tec
Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.