Download Free Opportunities For Biological Nitrogen Fixation In Rice And Other Non Legumes Book in PDF and EPUB Free Download. You can read online Opportunities For Biological Nitrogen Fixation In Rice And Other Non Legumes and write the review.

Proceedings of the Second Working Group Meeting of the Frontier Project on Nitrogen Fixation in Rice held in Faisalabad, Pakistan, 13-15 October 1996
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
Nitrogen is arguably the most important nutrient required by plants. However, the availability of nitrogen is limited in many soils and although the earth's atmosphere consists of 78.1% nitrogen gas (N2) plants are unable to use this form of nitrogen. To compensate , modern agriculture has been highly reliant on industrial nitrogen fertilizers to achieve maximum crop productivity. However, a great deal of fossil fuel is required for the production and delivery of nitrogen fertilizer. Moreover carbon dioxide (CO2) which is released during fossil fuel combustion contributes to the greenhouse effect and run off of nitrate leads to eutrophication of the waterways. Biological nitrogen fixation is an alternative to nitrogen fertilizer. It is carried out by prokaryotes using an enzyme complex called nitrogenase and results in atmospheric N2 being reduced into a form of nitrogen diazotrophic organisms and plants are able to use (ammonia). It is this process and its major players which will be discussed in this book. Biological Nitrogen Fixation is a comprehensive two volume work bringing together both review and original research articles on key topics in nitrogen fixation. Chapters across both volumes emphasize molecular techniques and advanced biochemical analysis approaches applicable to various aspects of biological nitrogen fixation. Volume 1 explores the chemistry and biochemistry of nitrogenases, nif gene regulation, the taxonomy, evolution, and genomics of nitrogen fixing organisms, as well as their physiology and metabolism. Volume 2 covers the symbiotic interaction of nitrogen fixing organisms with their host plants, including nodulation and symbiotic nitrogen fixation, plant and microbial "omics", cyanobacteria, diazotrophs and non-legumes, field studies and inoculum preparation, as well as nitrogen fixation and cereals. Covering the full breadth of current nitrogen fixation research and expanding it towards future advances in the field, Biological Nitrogen Fixation will be a one-stop reference for microbial ecologists and environmental microbiologists as well as plant and agricultural researchers working on crop sustainability.
During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.
This book covers aspects of biological nitrogen fixation along with the unique signaling and interaction between the diazotrophic bacteria and plants, especially the non-legumes. Nitrogen is the most important growth-limiting nutrient in the ecosystems and biological nitrogen fixation involving microbial symbionts, mainly rhizobia and legumes holds enormous interest across the globe. However, free-living rhizobacteria of non-legumes especially cereals, also establish themselves within the root system, fixing nitrogen and contributing to plant productivity, soil fertility, and agricultural sustainability. These non-symbiotic nitrogen fixers additionally exhibit various plant growth-promoting traits elevating productivity, fortifying nutrient content, and managing water stress in plants. The recent perspectives highlighting the mechanisms and background of non-symbiotic nitrogen fixation provide answers to unravel the potential of nitrogenase and various spectra of habitats of rhizobia and other diazotrophic bacteria. Further, the application of genetic engineering and the development of nitrogen-fixing cereals can provide a possible solution to the problem of food shortage. The book includes various scientific inputs providing comprehensive knowledge about the emergence of agricultural sustainability through nitrogen-fixing bacteria. The book illustrates the systematic mechanisms involved in biological nitrogen fixation through various illustrations, schematic drawings, and flow charts aiding in better understanding. The chapters elaborate on the physiology and metabolism of plant-bacteria interaction in different crops under diverse environmental conditions. Thus, the volume will provide a holistic scenario helping in advancing the novel plant-microbe interactions, cell-signaling, and plant-molecular interactions. The book will assist the agronomists, microbiologists, ecologists, plant pathologists, molecular biologists, environmentalists, policymakers, conservationists, and NGOs to develop biofertilizers and bioinoculants using various genera of microbes and contribute to the targets of sustainable goals in an eco-friendly manner.
Diazotrophic bacteria convert atmospheric nitrogen to plant-useable form and this input of nitrogen through biological fixation is of great agronomic importance. The contributions presented in this volume relate to free-living nitrogen fixers and the diazotrophs associated with plants. Symbiotic association of Frankia with non-legumes and cyanobacterial associations are also discussed. Research topics covered in this volume include the biochemistry and genetics of diazotrophs, recent developments in improvement of plant-microbe interactions and their molecular basis, the use of molecular probes in taxonomy and ecology of diazotrophs and reports on field applications, agronomic importance and improvement in methodologies for assessing their contribution to plants. This book provides valuable information not only for researchers working in the field of biological nitrogen fixation but also for biochemistry, molecular biologists, microbiologists and agronomists.
These proceedings bring together diverse disciplines that study nitrogen fixation and describe the most recent advances made in various fields: chemists are now studying FeMoco, the active site of nitrogenase in non-protein surroundings, and have refined the crystal structure of the enzyme to 1.6 angstroms.
Biological nitrogen fixation has essential role in N cycle in global ecosystem. Several types of nitrogen fixing bacteria are recognized: the free-living bacteria in soil or water; symbiotic bacteria making root nodules in legumes or non-legumes; associative nitrogen fixing bacteria that resides outside the plant roots and provides fixed nitrogen to the plants; endophytic nitrogen fixing bacteria living in the roots, stems and leaves of plants. In this book there are 11 chapters related to biological nitrogen fixation, regulation of legume-rhizobium symbiosis, and agriculture and ecology of biological nitrogen fixation, including new models for autoregulation of nodulation in legumes, endophytic nitrogen fixation in sugarcane or forest trees, etc. Hopefully, this book will contribute to biological, ecological, and agricultural sciences.
This publication comprises the proceedings of the first International Conference devoted to the structural roots of trees and woody plants. 'The Supporting Roots - Structure and Function,' 20-24 July 1998, Bordeaux, France. The meeting was held under the auspices ofIUFRO WPS 2. 01. 13 'Root Physiology and Symbiosis,' and its aim was to bring together scientific researchers, foresters and arboriculturalists, to discuss current problems in structural root research and disseminate knowledge to an audience from a wide disciplinary background. For the first time in an international conference, emphasis was placed on presenting recent reseach in the field of tree anchorage mechanics and root biomechanics. The way in which tree stability can be affected by root system symmetry and architecture was addressed, as well as how movement during wind sway can influence the development and shape of woody roots. The role of different nursery and planting techniques was discussed, in relation to effects on root system form and development. Root response to different environmental stresses, including water, temperature, nutrient and mechanical stress was addressed in detail. The structure and function of woody roots was also considered at different levels, from coarse to fine roots, with several papers discussing the interaction between roots and the rhizosphere. One of the conference highlights was the presentation of new methods in root research, by a series of workshops held at LRBB-INRA, Pierroton, on the northern border of the Gascony forest.
This volume discusses innovative advancements in soil and crop microbiome technology and methods to support agricultural sustainability and reduce soil degradation. As climate change impacts agricultural productivity and soil health in impacted regions throughout the world, potential alternatives to find balance between soil health and crop yield are increasingly needed. Therefore, this book provides a timely, global perspective with a collection of expert authors to address how microbiomes can be used to achieve agricultural sustainability in threatened and degraded areas, while also covering related matters including soil health, pest management, waste disposal, environmental contamination, biofertilizer production, composting, and microbial engineering. The book is meant to serve as a reference for agriculturalists, environmentalists, graduate and post-graduate students, researchers, and professors of sustainability and agricultural management.