Download Free Operationally Responsive Space Launch For Space Situational Awareness Missions Book in PDF and EPUB Free Download. You can read online Operationally Responsive Space Launch For Space Situational Awareness Missions and write the review.

The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. The United States? position is founded upon continued government investment in research and development in space technology [1], which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers [1] in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The EELV systems require an average of six to eight months from positioning on the launch table until liftoff [3]. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. The downturn of commercial space launch service use has undermined, for the time being, the ability of industry to recoup its significant investment in current launch systems. This has effectively precluded industry from sustaining a balanced robust industrial and technology base to sufficiently meet all United States Government spacelift needs [2]. The reduction of resources to the Department of Defense and the Air Force, coupled by the long launch preparation periods have further resulted in less operationally responsive spacelift capability from new launch systems.
The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. The United States? position is founded upon continued government investment in research and development in space technology [1], which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers [1] in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The EELV systems require an average of six to eight months from positioning on the launch table until liftoff [3]. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. The downturn of commercial space launch service use has undermined, for the time being, the ability of industry to recoup its significant investment in current launch systems. This has effectively precluded industry from sustaining a balanced robust industrial and technology base to sufficiently meet all United States Government spacelift needs [2]. The reduction of resources to the Department of Defense and the Air Force, coupled by the long launch preparation periods have further resulted in less operationally responsive spacelift capability from new launch systems.
The capability to rapidly deploy tactical satellites to meet a Joint Force Commander's immediate battlespace requirements is a well-documented joint capability need. Key U.S. strategic documentation cites the need for the capability to maintain persistent surveillance or an "unblinking eye" over battlespace and to rapidly reconstitute critical space capabilities to preserve situational awareness. The warfighter requires a tactical space-based deployment capability which employs a request to launch and operational deployment window of 90 to 120 days. This master's thesis executed two (2) major areas of work: apply, and reinforce the Operationally Responsive Space (ORS) mission tasks using the Joint Capabilities Integration Development System (JCIDS) process; then based on capability gap data generated from the process, analyze and define the capability gap of an ORS Adaptive Integration, Test and Logistics (IT & L) process for payload to bus deployment to meet the identified time scales. This document recommends engineering solutions and processes for the ORS IT & L "to-be" state for this warfighter capability. The ORS adaptive IT & L CONOPS developed as part of this work focuses on the Tactical Satellite Rapid Deployment System (TSRDS), which is an adaptive integration, test and logistics capability that enables rapid and effective payload to bus integration to meet a 90- to 120-day warfighter window.
Endorsed by the International Association for the Advancement of Space Safety (IAASS) and drawing on the expertise of the world’s leading experts in the field, Safety Design for Space Operations provides the practical how-to guidance and knowledge base needed to facilitate effective launch-site and operations safety in line with current regulations. With information on space operations safety design currently disparate and difficult to find in one place, this unique reference brings together essential material on: Best design practices relating to space operations, such as the design of spaceport facilities. Advanced analysis methods, such as those used to calculate launch and re-entry debris fall-out risk. Implementation of safe operation procedures, such as on-orbit space traffic management. Safety considerations relating to the general public and the environment in addition to personnel and asset protection. Taking in launch operations safety relating unmanned missions, such as the launch of probes and commercial satellites, as well as manned missions, Safety Design for Space Operations provides a comprehensive reference for engineers and technical managers within aerospace and high technology companies, space agencies, spaceport operators, satellite operators and consulting firms. Fully endorsed by the International Association for the Advancement of Space Safety (IAASS), with contributions from leading experts at NASA, the European Space Agency (EASA) and the US Federal Aviation Administration (FAA), amongst others Covers all aspects of space operations relating to safety of the general public, as well as the protection of valuable assets and the environment Focuses on launch operations safety relating to manned and unmanned missions, such as the launch of probes and commercial satellites
In 1994, the National Space Transportation Policy laid the framework for appropriate government agencies to maintain strong launch systems and infrastructure while modernizing space transportation capabilities and encouraging cost reductions. More than a decade later, through combined Department of Defense (DoD) and industrial investment, the two Evolved Expendable Launch Vehicle (EELV) families of U.S. rockets (Atlas V and Delta IV) have proved to be maturing, reliable state-of-the-art technologies. In 2004, Congress directed the Secretary of Defense to establish a panel of experts with extensive space launch and operations background to address the future National Security Space launch requirements and the means of meeting those requirements. DoD selected RAND to facilitate and support this panel in its deliberations between May 2005 and May 2006. This report analyzes the National Security Space (NSS) Launch Requirements Panel's major findings and recommendations. In short, the Panel concludes that, because basic rocketry principles, use of chemically derived thrust, and multiple expendable stages seem certain to remain the design of choice for operational space launch vehicles, the EELV can satisfy all known and projected NSS requirements through 2020.
Current space assets provide communication, navigation, and ISR capabilities using satellites designed for long life and high reliability. Those life and reliability requirements are due in part to the high cost and limited availability of space launch. Current space systems require years to develop due to the complicated specialized design and manufacturing processes. The high cost of launching space assets, and competition with the commercial launch market, require launch scheduling years in advance. Moreover, once it has been scheduled on a launch vehicle, it may take several months to checkout and integrate into the launch vehicle and several additional months to become operational once it's in space. This existing capability is not operationally responsive.
The U.S. space program is rapidly changing from an activity driven by federal government launches to one driven by commercial launches. In 1997, for the first time commercial launches outnumbered government launches at the Eastern Range (ER), located at Cape Canaveral Air Station, Florida. Commercial activity is also increasing at the Western Range (WR), located at Vandenberg Air Force Base, California. The government itself is emulating commercial customers, shifting from direct management of launch programs to the purchase of space launch services from U.S. commercial launch companies in an open, competitive market. The fundamental goal of the U.S. space program is to ensure safe, reliable, and affordable access to space. Despite the inherent danger of space launches, the U.S. space program has demonstrated its ability to protect the public. No launch site worker or member of the general public has been killed or seriously injured in any of the 4,600 launches conducted at the ER and WR during the entire 50-year history of the space age. Streamlining Space Launch Range Safety discusses whether range safety processes can be made more efficient and less costly without compromising public safety. This report presents six primary recommendations, which address risk management, Africa gates, roles and responsibilities, range safety documentation [EWR 127-1]), global positioning system (GPS) receiver tracking systems, and risk standards for aircraft and ships.
A design methodology for a new breed of launch vehicle capable of lofting small satellites to orbit is discussed. The growing need for such a rocket is great: the United States has no capabilities in place to quickly launch and reconstitute satellite constellations. A loss of just one satellite, natural or induced, could significantly degrade or entirely eliminate critical space-based assets which would need to be quickly replaced. Furthermore a rocket capable of meeting the requirements for operationally responsive space missions would be an ideal launch platform for small commercial satellites. The proposed architecture to alleviate this lack of an affordable dedicated small-satellite launch vehicle relies upon a combination of expendable medium-range military surplus solid rocket motor assets. The dissertation discusses in detail the current operational capabilities of these military boosters and provides an outline for necessary refurbishments required to successfully place a small payload in orbit. A custom 3DOF trajectory script is used to evaluate the performance of these designs. Concurrently, a parametric cost-mass-performance response surface methodology is employed as an optimization tool to minimize life cycle costs of the proposed vehicles. This optimization scheme is centered on reducing life cycle costs per payload mass delivered rather than raw performance increases. Lastly, a novel upper-stage engine configuration using Hydroxlammonium Nitrate (HAN) is introduced and experimentally static test fired to illustrate the inherent simplicity and high performance of this high density, nontoxic propellant. The motor was operated in both pulse and small duration tests using a newly developed proprietary mixture that is hypergolic with HAN upon contact. This new propellant is demonstrated as a favorable replacement for current space vehicles relying on the heritage use of hydrazine. The end result is a preliminary design of a vehicle built from demilitarized booster assets that complements, rather than replaces, traditional space launch vehicles. This dissertation proves that such capabilities exist and more importantly that the resulting architecture can serve as a viable platform for immediate and affordable access to low Earth orbit.