Download Free Omics And System Biology Approaches For Delivering Better Cereals Book in PDF and EPUB Free Download. You can read online Omics And System Biology Approaches For Delivering Better Cereals and write the review.

Cereals like wheat, rice, maize, and barley have long been the dominant crops in agriculture, providing a significant portion of our food supply. Plant breeders and geneticists have always been interested in improving the yield and quality of cereals. The primary challenges in cereal breeding lie in adapting to climate change and enhancing yield and stress tolerance. In recent years, omics approaches such as genomics, transcriptomics, proteomics, and metabolomics have emerged as valuable tools to understand the genetic and molecular basis of cereal development under optimum and stress conditions. However, studying individual datasets for different cereals has limited our comprehensive understanding of complex traits and biological networks. To overcome this limitation, a systems biology approach is necessary. Systems biology integrates multiple omics data, modeling, and cell activity prediction to gain a holistic understanding of biological processes. By considering the whole system and its interactions, rather than isolated components, researchers can develop predictive models and even re-engineer cells. In the context of cereal improvement, systems biology can play a crucial role in identifying and introducing desirable traits such as yield, quality, and stress tolerance. It may help researchers uncover the molecular underpinnings of complex traits and offer insights for enhancing cereals on a national and international scale. The book explores available omics resources, the integration of multi-omics data, and systems biology methods, focusing on their applications in cereals breeding and research. It highlights current and innovative strategies to understand complex traits, improve yield, and enhance resistance to biotic and abiotic stresses. It also addresses the challenges and opportunities associated with modeling multi-omics data and analyzing systems-level information. By leveraging systems biology and integrated omics research, this book aims to redefine the future research agenda for cereal improvement.
Biofortification is a widely accepted cost-effective agricultural strategy to improve the nutrient deficiency in populations. It is especially useful in low income and developing nations. Strategies for biofortification employ crop breeding, targeted genetic alteration, and agronomy, show promise for addressing multiple forms of human malnutrition. To increase the bioavailability of food nutrients, biofortification efforts must focus on improving the nutrient content of food and decreasing anti-nutrients. This book covers the basics of biofortification, international efforts, challenges, opportunities, and the use of the latest omics technologies in addition to classical approaches. It covers the most studied micronutrients, vitamin biofortification, and the new topics in dietary fibers, starch quality, and phenolics. It uniquely covers the antinutrients like phytic acid, ODAP, and Glucosinolates. It also reviews food bioavailability, scientific research, and meta-analyses to assess the health-promoting efficacy of different nutrients. The book attempts to cover all bases, from decision considerations to prospects, as well as biofortification of nutrients, antinutrient reduction, and the use of latest technology to aid in the nutritional enhancement of virtually all recorded food crops.
Biofortification is a widely accepted cost-effective agricultural strategy to improve the nutrient deficiency in populations. It is especially useful in low income and developing nations. Strategies for biofortification employ crop breeding, targeted genetic alteration, and agronomy, show promise for addressing multiple forms of human malnutrition. To increase the bioavailability of food nutrients, biofortification efforts must focus on improving the nutrient content of food and decreasing anti-nutrients. This book covers the basics of biofortification, international efforts, challenges, opportunities, and the use of the latest omics technologies in addition to classical approaches. It covers the most studied micronutrients, vitamin biofortification, and the new topics in dietary fibers, starch quality, and phenolics. It uniquely covers the antinutrients like phytic acid, ODAP, and Glucosinolates. It also reviews food bioavailability, scientific research, and meta-analyses to assess the health-promoting efficacy of different nutrients. The book attempts to cover all bases, from decision considerations to prospects, as well as biofortification of nutrients, antinutrient reduction, and the use of latest technology to aid in the nutritional enhancement of virtually all recorded food crops.
Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide.
The edited book highlights various emerging Omics tools and techniques that are currently being used in the analysis of responses to different abiotic stress in agronomically important cereals and their applications in enhancing tolerance mechanism. Plants are severely challenged by diverse abiotic stress factors such as low water availability (drought), excess water (flooding/ waterlogging), extremes of temperatures (cold, chilling, frost, and heat), salinity, mineral deficiency, and heavy metal toxicity. Agronomically important cereal crops like Rice, Wheat, Maize, Sorghum, Pearl Millet, Barley, Oats, Rye, Foxtail Millets etc. that are the major sources of food material and nutritional components for human health are mostly exposed to abiotic stresses during the critical phases of flowering and grain yield. Different Omics platforms like genomics, transcriptomics proteomics, metabolomics and phenomics, in conjunction with breeding and transgenic technology, and high throughput technologies like next generation sequencing, epigenomics, genome editing and CRISPR-Cas technology have emerged altogether in understanding abiotic stress response and strengthening defense and tolerance mechanism of different cereals. This book is beneficial to different universities and research institutes working with different cereal crops in the areas of stress physiology, stress-associated genes and proteins, genomics, proteomics, genetic engineering, and other fields of molecular plant physiology. The book can also be used as advanced textbook for the course work of research and master’s level students. It will be of use to people involved in ecological studies and sustainable agriculture. The proposed book bring together the global leaders working on environmental stress in different cereal crops and motivate scientists to explore new horizons in the relevant areas of research.
This edited volume summarizes the recent advancements made in plant science including molecular biology and genome editing , particularly in the development of novel pathways tolerant to climate change-induced stresses such as drought, extreme temperatures, cold, salinity, flooding, etc. These stresses are liable for decrease in yields in many crop plants at global level. Till date conventional plant breeding approaches have resulted in significant improvement of crop plants for producing higher yields during adverse climatic conditions. However, the pace of improvement through conventional plant breeding needs to be accelerated in keeping with the growing demand of food and increasing human populationl, particularly in developing world. This book serves as a comprehensive reference material for researchers, teachers, and students involved in climate change-related abiotic stress tolerance studies in plants.
​The field of plant breeding has grown rapidly in the last decade with breakthrough research in genetics and genomics, inbred development, population improvement, hybrids, clones, self-pollinated crops, polyploidy, transgenic breeding and more. This book discusses the latest developments in all these areas but explores the next generation of needs and discoveries including omics beyond genomics, cultivar seeds and intellectual and property rights. This book is a leading-edge publication of the latest results and forecasts important areas of future needs and applications.​
This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.
The research field of “plant speed breeding" is promising to meet the future demand for crop improvement in an efficient and effective manner. The process accelerates breeding and research programs through the shortening of the generation time of crops. Plant Speed Breeding and High-Throughput Technologies explores and analyzes a range of innovations from CRISPR/Cas9-based genome editing to state-of-the-art controlled-environment growth chambers. The book integrates achievements of plant speed breeding technologies with an emphasis on the fundamental and advanced systems for genome editing, functional genomics, controlled-environment growth chambers, genomic and phenotypic selection methods, and high-throughput technologies. It examines the applications of technologies across major model plants and key crops such as cereals, vegetables, and fruit trees. The book explores high-throughput genotyping using next-generation sequencing systems, enabling precise single nucleotide polymorphism markers, quantitative trait loci mapping, and genome-wide association studies . These tools are used in identifying candidate genes that will revolutionize crop breeding, as they are capable of tolerating complex abiotic and biotic stresses induced by global climate change. Serving as an ideal reference on plant speed breeding technologies, this book is for graduate students, teachers, researchers, and experts in the fields of plant sciences and plant breeding as well as agronomy and agriculture.