Download Free Olfactory Receptors Book in PDF and EPUB Free Download. You can read online Olfactory Receptors and write the review.

Comprehensive Overview of Advances in OlfactionThe common belief is that human smell perception is much reduced compared with other mammals, so that whatever abilities are uncovered and investigated in animal research would have little significance for humans. However, new evidence from a variety of sources indicates this traditional view is likely
Written by leaders in the field of chemosensation, Chemosensory Transduction provides a comprehensive resource for understanding the molecular mechanisms that allow animals to detect their chemical world. The text focuses on mammals, but also includes several chapters on chemosensory transduction mechanisms in lower vertebrates and insects. This book examines transduction mechanisms in the olfactory, taste, and somatosensory (chemesthetic) systems as well as in a variety of internal sensors that are responsible for homeostatic regulation of the body. Chapters cover such topics as social odors in mammals, vertebrate and invertebrate olfactory receptors, peptide signaling in taste and gut nutrient sensing. Includes a foreword by preeminent olfactory scientist Stuart Firestein, Chair of Columbia University's Department of Biological Sciences in New York, NY. Chemosensory Transduction describes state-of-the-art approaches and key findings related to the study of the chemical senses. Thus, it serves as the go-to reference for this subject for practicing scientists and students with backgrounds in sensory biology and/or neurobiology. The volume will also be valuable for industry researchers engaged in the design or testing of flavors, fragrances, foods and/or pharmaceuticals. - Provides a comprehensive overview for all chemosensory transduction mechanisms - Valuable for academics focused on sensory biology, neurobiology, and chemosensory transduction, as well as industry researchers in new flavor, fragrance, and food testing - Edited by leading experts in the field of olfactory transduction - Focuses on mammals, but lower vertebrates and invertebrate model systems are also included
Many advances have been made in the last decade in the understanding of the computational principles underlying olfactory system functioning. Neuromorphic Olfaction is a collaboration among European researchers who, through NEUROCHEM (Fp7-Grant Agreement Number 216916)-a challenging and innovative European-funded project-introduce novel computing p
Despite the best efforts of many and despite landmark discoveries and experimental ingenuity, challenges in the pursuit of research related to olfactory receptors (ORs) continue to exist. In Olfactory Receptors: Methods and Protocols, experts in the field contribute chapters that serve to address these challenges. The volume consists of several sections: knowledge dissemination of ORs, theoretical assessments of OR structure and function, as well as development and use of expression systems and experimental functional analysis. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and practical, Olfactory Receptors: Methods and Protocols seeks to aid researchers in furthering the knowledge of olfaction and moving us ever closer to the thrilling discoveries that will follow.
The scope of this volume of Progress in Molecular Biology and Translational Science includes the molecular regulation of olfactory processes in vertebrates and insects including detailed discussion of olfactory proteins, signaling cascades and olfactory receptor modeling. In addition, because insect olfaction is an important and emerging field, it is also discussed in the context of key research questions such as disruption of host-finding by insect disease vectors, elucidation of the diverse range of compounds that are detected by insects, and the detection of pheromones by moths. Comprehensive coverage of molecular processes in olfaction of vertebrates and insects Focus on the emerging field of insect olfaction Contributions by leading research groups in their fields, from a range of countries Discusses fundamental knowledge and also key applications being addressed by the research
"Written by two experts in the field, this book provides information useful to physicians for assessing and managing chemosensory disorders - with appropriate case-histories - and summarizes the current scientific knowledge of human olfaction. It will be of particular interest to neurologists, otolaryngologists, psychologists, psychiatrists, and neuroscientists."--BOOK JACKET.
Illustrations by Lorie M. Gavulic, MFA Sponsored by the American Society for Neurochemistry.
“I cannot recommend this fascinating book highly enough.” –Simon Cotton, Chemistry & Industry, September 2014 “In conclusion: A comprehensive introduction to the world of odours, not only for chemists.” –review in German: Monika Paduch, Gefahrstoffe - Reinhaltung Luft, October 2014 A comprehensive overview of fragrance chemistry Fragrance materials are universal, from personal care products to household cleaners, laundry products, and more. Although many of the scents themselves are synthesized in a lab, the actual mechanism of odour has long baffled chemists who attempt to model it for research. In Chemistry and the Sense of Smell, industry chemist Charles S. Sell explores the chemistry and biology surrounding the human detection and processing of odour, providing a comprehensive, single-volume guide to the totality of fragrance chemistry. The correlation between molecular structure and odour is much more complex than initially thought, and the intricacies of the mechanism by which the brain interprets scent signals leaves much to be discovered. This book provides a solid foundation of fragrance chemistry and highlights the relationship between research and industry with topics such as: The analysis and characterization of odour The role scent plays in our lives The design and manufacture of new fragrance ingredients The relationship between molecular structure and odour The mechanism of olfaction Intellectual challenges and the future of the field Complete with illustrations that clarify difficult concepts and the structures of the molecules under discussion, Chemistry and the Sense of Smell is an all-inclusive guide to the science of scent. For professionals in the fragrance industry or related fields, this book is one resource that should not be overlooked.
JOHN G. HILDEBRAND Research on insect olfaction is important for at least two reasons. First, the olfactory systems of insects and their arthropod kin are experi mentally favourable models for studies aimed at learning about general principles of olfaction that apply to vertebrates and invertebrates alike. Detailed comparisons between the olfactory pathways in vertebrates and insects have revealed striking similarities of functional organisation, physiol ogy, and development, suggesting that olfactory information is processed through neural mechanisms more similar than different in these evolution arily remote creatures. Second, insect olfaction itself is important because of the economic and medical impact of insects that are agricultural pests and disease vectors, as well as positive impact of beneficial species, such as the bees and moths responsible for pollination and production of honey. The harm or benefit attributable to an insect is a function of what it does - that is, of its behaviour - which is shaped by sensory information. Often olfaction is the key modality for control of basic insect behaviour, such as ori entation and movement toward, and interactions with, potential mates, appro priate sites for oviposition, and sources of food. Not surprisingly, therefore, much work on insect olfaction has been motivated by long-term hopes of using knowledge of this pivotal sensory system to design strategies for mon itoring and managing harmful species and fostering the welfare of beneficial ones.
The behavior of insects transcends elementary forms of adaptive responding to environmental changes. We discuss examples of exploration, instrumental and observational learning, expectation, learning in a social context, and planning of future actions. We show that learning about sensory cues allows insects to transfer flexibly their responses to novel stimuli attaining thereby different levels of complexity, from basic generalization to categorization and concept learning consistent with rule extraction. We argue that updating of existing memories requires multiple forms of memory processing. A key element in these processes is working memory, an active form of memory considered to allow evaluation of actions on the basis of expected outcome. We discuss which of these cognitive faculties can be traced to specific neural processes and how they relate to the overall organization of the insect brain.