Download Free Ocean Wave Sensors Book in PDF and EPUB Free Download. You can read online Ocean Wave Sensors and write the review.

The goals of wind wave research are relatively well defined: to be able to predict the wind wave field and its effect on the environment. That environment could be natural (beaches, the atmosphere etc.) or imposed by human endeavour (ports, harbours, coastal settlements etc.). Although the goals are similar, the specific requirements of these various fields differ considerably.This book attempts to summarise the current state of this knowledge and to place this understanding into a common frame work. It attempts to take a balanced approach between the pragmatic engineering view of requiring a short term result and the scientific quest for detailed understanding. Thus, it attempts to provide a rigorous description of the physical processes involved as well as practical predictive tools.
Waves in Oceanic and Coastal Waters describes the observation, analysis and prediction of wind-generated waves in the open ocean, in shelf seas, and in coastal regions with islands, channels, tidal flats and inlets, estuaries, fjords and lagoons. Most of this richly illustrated book is devoted to the physical aspects of waves. After introducing observation techniques for waves, both at sea and from space, the book defines the parameters that characterise waves. Using basic statistical and physical concepts, the author discusses the prediction of waves in oceanic and coastal waters, first in terms of generalised observations, and then in terms of the more theoretical framework of the spectral energy balance. He gives the results of established theories and also the direction in which research is developing. The book ends with a description of SWAN (Simulating Waves Nearshore), the preferred computer model of the engineering community for predicting waves in coastal waters.
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.
The book provides a systematic introduction to the principles, state-of-the-art methods and applications of high frequency surface/sky wave radar and microwave marine radar, as well as an exploration of ongoing challenges in the field. It is a valuable resource for the radar and remote sensing communities.
This book addresses both fundamental and applied aspects of ocean waves including the use of wave observations made from satellites. More specifically it describes the WAM model, its scientific basis, its actual implementation, and its many applications. The three sections of the volume describe the basic statistical theory and the relevant physical processes; the numerical model and its global and regional applications; and satellite observations, their interpretation and use in data assimilation.
Waves critically affect man in coastal regions, including the open coasts and adjacent continental shelves. Preventing beach erosion, designing and building structures, designing and operating ships, providing marine forecasts, and coastal planning are but a few examples of projects for which extensive information about wave conditions is critical. Scientific studies, especially those in volving coastal processes and the development of better wave prediction models, also require wave condition information. How ever, wave conditions along and off the coasts of the United States have not been adequately determined. The main categories of available wave data are visual estimates of wave conditions made from ships at sea, scientific measurements of waves made for short time periods at specific locations, and a small number of long-term measurements made from piers or offshore platforms. With these considerations in mind, the National Ocean Survey of the National Oceanic and Atmospheric Administration sponsored the Ocean Wave Climate Symposium at Herndon, Virginia, July 12-14, 1977. This volume contains papers presented at this symposium. A goal of the symposium was to establish the foundations for a com prehensive and far-sighted wave measurement and analysis program to fully describe the coastal wave climate of the United States. Emphasis was placed on ocean engineering and scientific uses of wave data, existing wave monitoring programs, and modern measure ment techniques which may provide currently needed data.
By assuming finite conducting, Gaussian-distributed, statistically stationary and homogeneous ocean surface, the ocean wave spectrometer measurements made in the Gulf Stream Experiment have demonstrated the capability of inferring the directional wave number slope spectra by using the specular point model for look-angles of less than 20 degrees. These measurements have also demonstrated the necessity of independent measurements of wind direction, mean square surface slope, and foam and spray. The results also indicate that at least four independent directional measurements with spatial resolution of 0.1 meters or smaller and spatial coverage of 750 to 1000 meters are necessary.