Download Free Ocean And Seabed Acoustics Book in PDF and EPUB Free Download. You can read online Ocean And Seabed Acoustics and write the review.

Respected scientist and educator George V. Frisk draws on his extensive professional experience to demonstrate how the ocean environment provides an excellent setting in which to display general principles of wave propagation that are also applicable to other areas of wave physics. Ocean and Seabed Acoustics proceeds with a derivation of elementary solutions to the wave equation in free space and then progressively addresses problems of increasing complexity. This book concludes with a discussion of acoustic wave propagation due to a point source in an inhomogeneous waveguide with lossy boundaries.
Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter
This book is a research monograph on high-Frequency Seafloor Acoustics. It is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. It provides a critical evaluation of the data and models pertaining to high-frequency acoustic interaction with the seafloor, which will be of interest to researchers in underwater acoustics and to developers of sonars. Models and data are presented so as to be readily usable, backed up by extensive explanation. Much of the data is new, and the discussion in on two levels: concise descriptions in the main text backed up by extensive technical appendices.
Publisher Description
A concise guide to the theory and application of numerical methods for predicting ocean acoustic propagation, also providing an introduction to numerical methods, with an overview of those methods presently in use. An in-depth development of the implicit-finite-difference technique is presented together with bench-mark test examples included to demonstrate its application to realistic ocean environments. Other applications include atmospheric acoustics, plasma physics, quantum mechanics, optics and seismology.
Recent advances in the power of inversion methods, the accuracy of acoustic field prediction codes, and the speed of digital computers have made the full field inversion of ocean and seismic parameters on a large scale a practical possibility. These methods exploit amplitude and phase information detected on hydrophone/geophone arrays, thereby extending traditional inversion schemes based on time of flight measurements. Full field inversion methods provide environmental information by minimising the mismatch between measured and predicted acoustic fields through a global search of possible environmental parameters. Full Field Inversion Methods in Ocean and Seismo-Acoustics is the formal record of a conference held in Italy in June 1994, sponsored by NATO SACLANT Undersea Research Centre. It includes papers by NATO specialists and others. Topics covered include: · speed and accuracy of acoustic field prediction codes · signal processing strategies · global inversion algorithms · search spaces of environmental parameters · environmental stochastic limitations · special purpose computer architectures · measurement geometries · source and receiving sensor technologies.
This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.
A practical guide to the latest techniques to measure sediments, seabed, water and transport mechanisms in estuaries and coastal waters. Covering a broad range of topics, enough background is included to explain how each technology functions. A review of recent fieldwork experiments demonstrates how modern methods apply in real-life scenarios.
Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. It covers the general features of sonar systems, transducers and arrays, signal processing and performance evaluation. It provides an overview of today's applications, presenting the working principles of the various systems. From the reviews: "Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. ⦠It provides an overview of todayâs applications, presenting the working principles of the various systems." (Oceanis, Vol. 27 (3-4), 2003) "This book is a general survey of Underwater Acoustics, intended to make the subject âas easily accessible as possible, with a clear emphasis on applications.â In this the author has succeeded, with a wide variety of subjects presented with minimal derivation ⦠. There is an emphasis on technology and on intuitive physical explanation ⦠." (Darrell R. Jackson, Journal of the Acoustic Society of America, Vol. 115 (2), February, 2004) "This is an exciting new scientific publication. It is timely and welcome ⦠. Furthermore, it is up to date and readable. It is well researched, excellently published and ranks with earlier books in this discipline ⦠. Many persons in the marine science field including acousticians, hydrographers, oceanographers, fisheries scientists, engineers, educators, students ⦠and equipment manufacturers will benefit greatly by reading all or part of this text. The author is to be congratulated on his fine contribution ⦠." (Stephen B. MacPhee, International Hydrographic Review, Vol. 4 (2), 2003)
Underwater Acoustic Modeling and Simulation, Fourth Edition continues to provide the most authoritative overview of currently available propagation, noise, reverberation, and sonar-performance models. This fourth edition of a bestseller discusses the fundamental processes involved in simulating the performance of underwater acoustic systems and emphasizes the importance of applying the proper modeling resources to simulate the behavior of sound in virtual ocean environments. New to the Fourth Edition Extensive new material that addresses recent advances in inverse techniques and marine-mammal protection Problem sets in each chapter Updated and expanded inventories of available models Designed for readers with an understanding of underwater acoustics but who are unfamiliar with the various aspects of modeling, the book includes sufficient mathematical derivations to demonstrate model formulations and provides guidelines for selecting and using the models. Examples of each type of model illustrate model formulations, model assumptions, and algorithm efficiency. Simulation case studies are also included to demonstrate practical applications. Providing a thorough source of information on modeling resources, this book examines the translation of our physical understanding of sound in the sea into mathematical models that simulate acoustic propagation, noise, and reverberation in the ocean. The text shows how these models are used to predict and diagnose the performance of complex sonar systems operating in the undersea environment.